1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
|
- import numpy as np
- from core.leras import nn
- tf = nn.tf
- class Conv2D(nn.LayerBase):
- """
- default kernel_initializer - CA
- use_wscale bool enables equalized learning rate, if kernel_initializer is None, it will be forced to random_normal
- """
- def __init__(self, in_ch, out_ch, kernel_size, strides=1, padding='SAME', dilations=1, use_bias=True, use_wscale=False, kernel_initializer=None, bias_initializer=None, trainable=True, dtype=None, **kwargs ):
- if not isinstance(strides, int):
- raise ValueError ("strides must be an int type")
- if not isinstance(dilations, int):
- raise ValueError ("dilations must be an int type")
- kernel_size = int(kernel_size)
- if dtype is None:
- dtype = nn.floatx
- if isinstance(padding, str):
- if padding == "SAME":
- padding = ( (kernel_size - 1) * dilations + 1 ) // 2
- elif padding == "VALID":
- padding = None
- else:
- raise ValueError ("Wrong padding type. Should be VALID SAME or INT or 4x INTs")
- else:
- padding = int(padding)
-
-
- self.in_ch = in_ch
- self.out_ch = out_ch
- self.kernel_size = kernel_size
- self.strides = strides
- self.padding = padding
- self.dilations = dilations
- self.use_bias = use_bias
- self.use_wscale = use_wscale
- self.kernel_initializer = kernel_initializer
- self.bias_initializer = bias_initializer
- self.trainable = trainable
- self.dtype = dtype
- super().__init__(**kwargs)
- def build_weights(self):
- kernel_initializer = self.kernel_initializer
- if self.use_wscale:
- gain = 1.0 if self.kernel_size == 1 else np.sqrt(2)
- fan_in = self.kernel_size*self.kernel_size*self.in_ch
- he_std = gain / np.sqrt(fan_in)
- self.wscale = tf.constant(he_std, dtype=self.dtype )
- if kernel_initializer is None:
- kernel_initializer = tf.initializers.random_normal(0, 1.0, dtype=self.dtype)
- #if kernel_initializer is None:
- # kernel_initializer = nn.initializers.ca()
- self.weight = tf.get_variable("weight", (self.kernel_size,self.kernel_size,self.in_ch,self.out_ch), dtype=self.dtype, initializer=kernel_initializer, trainable=self.trainable )
- if self.use_bias:
- bias_initializer = self.bias_initializer
- if bias_initializer is None:
- bias_initializer = tf.initializers.zeros(dtype=self.dtype)
- self.bias = tf.get_variable("bias", (self.out_ch,), dtype=self.dtype, initializer=bias_initializer, trainable=self.trainable )
- def get_weights(self):
- weights = [self.weight]
- if self.use_bias:
- weights += [self.bias]
- return weights
- def forward(self, x):
- weight = self.weight
- if self.use_wscale:
- weight = weight * self.wscale
- padding = self.padding
- if padding is not None:
- if nn.data_format == "NHWC":
- padding = [ [0,0], [padding,padding], [padding,padding], [0,0] ]
- else:
- padding = [ [0,0], [0,0], [padding,padding], [padding,padding] ]
- x = tf.pad (x, padding, mode='CONSTANT')
-
- strides = self.strides
- if nn.data_format == "NHWC":
- strides = [1,strides,strides,1]
- else:
- strides = [1,1,strides,strides]
- dilations = self.dilations
- if nn.data_format == "NHWC":
- dilations = [1,dilations,dilations,1]
- else:
- dilations = [1,1,dilations,dilations]
-
- x = tf.nn.conv2d(x, weight, strides, 'VALID', dilations=dilations, data_format=nn.data_format)
- if self.use_bias:
- if nn.data_format == "NHWC":
- bias = tf.reshape (self.bias, (1,1,1,self.out_ch) )
- else:
- bias = tf.reshape (self.bias, (1,self.out_ch,1,1) )
- x = tf.add(x, bias)
- return x
- def __str__(self):
- r = f"{self.__class__.__name__} : in_ch:{self.in_ch} out_ch:{self.out_ch} "
- return r
- nn.Conv2D = Conv2D
|