1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
|
- import numpy as np
- from core.leras import nn
- tf = nn.tf
- class BlurPool(nn.LayerBase):
- def __init__(self, filt_size=3, stride=2, **kwargs ):
- if nn.data_format == "NHWC":
- self.strides = [1,stride,stride,1]
- else:
- self.strides = [1,1,stride,stride]
- self.filt_size = filt_size
- pad = [ int(1.*(filt_size-1)/2), int(np.ceil(1.*(filt_size-1)/2)) ]
- if nn.data_format == "NHWC":
- self.padding = [ [0,0], pad, pad, [0,0] ]
- else:
- self.padding = [ [0,0], [0,0], pad, pad ]
- if(self.filt_size==1):
- a = np.array([1.,])
- elif(self.filt_size==2):
- a = np.array([1., 1.])
- elif(self.filt_size==3):
- a = np.array([1., 2., 1.])
- elif(self.filt_size==4):
- a = np.array([1., 3., 3., 1.])
- elif(self.filt_size==5):
- a = np.array([1., 4., 6., 4., 1.])
- elif(self.filt_size==6):
- a = np.array([1., 5., 10., 10., 5., 1.])
- elif(self.filt_size==7):
- a = np.array([1., 6., 15., 20., 15., 6., 1.])
- a = a[:,None]*a[None,:]
- a = a / np.sum(a)
- a = a[:,:,None,None]
- self.a = a
- super().__init__(**kwargs)
- def build_weights(self):
- self.k = tf.constant (self.a, dtype=nn.floatx )
- def forward(self, x):
- k = tf.tile (self.k, (1,1,x.shape[nn.conv2d_ch_axis],1) )
- x = tf.pad(x, self.padding )
- x = tf.nn.depthwise_conv2d(x, k, self.strides, 'VALID', data_format=nn.data_format)
- return x
- nn.BlurPool = BlurPool
|