Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

Conv2DTranspose.py 4.4 KB

You have to be logged in to leave a comment. Sign In
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
  1. import numpy as np
  2. from core.leras import nn
  3. tf = nn.tf
  4. class Conv2DTranspose(nn.LayerBase):
  5. """
  6. use_wscale enables weight scale (equalized learning rate)
  7. if kernel_initializer is None, it will be forced to random_normal
  8. """
  9. def __init__(self, in_ch, out_ch, kernel_size, strides=2, padding='SAME', use_bias=True, use_wscale=False, kernel_initializer=None, bias_initializer=None, trainable=True, dtype=None, **kwargs ):
  10. if not isinstance(strides, int):
  11. raise ValueError ("strides must be an int type")
  12. kernel_size = int(kernel_size)
  13. if dtype is None:
  14. dtype = nn.floatx
  15. self.in_ch = in_ch
  16. self.out_ch = out_ch
  17. self.kernel_size = kernel_size
  18. self.strides = strides
  19. self.padding = padding
  20. self.use_bias = use_bias
  21. self.use_wscale = use_wscale
  22. self.kernel_initializer = kernel_initializer
  23. self.bias_initializer = bias_initializer
  24. self.trainable = trainable
  25. self.dtype = dtype
  26. super().__init__(**kwargs)
  27. def build_weights(self):
  28. kernel_initializer = self.kernel_initializer
  29. if self.use_wscale:
  30. gain = 1.0 if self.kernel_size == 1 else np.sqrt(2)
  31. fan_in = self.kernel_size*self.kernel_size*self.in_ch
  32. he_std = gain / np.sqrt(fan_in) # He init
  33. self.wscale = tf.constant(he_std, dtype=self.dtype )
  34. if kernel_initializer is None:
  35. kernel_initializer = tf.initializers.random_normal(0, 1.0, dtype=self.dtype)
  36. #if kernel_initializer is None:
  37. # kernel_initializer = nn.initializers.ca()
  38. self.weight = tf.get_variable("weight", (self.kernel_size,self.kernel_size,self.out_ch,self.in_ch), dtype=self.dtype, initializer=kernel_initializer, trainable=self.trainable )
  39. if self.use_bias:
  40. bias_initializer = self.bias_initializer
  41. if bias_initializer is None:
  42. bias_initializer = tf.initializers.zeros(dtype=self.dtype)
  43. self.bias = tf.get_variable("bias", (self.out_ch,), dtype=self.dtype, initializer=bias_initializer, trainable=self.trainable )
  44. def get_weights(self):
  45. weights = [self.weight]
  46. if self.use_bias:
  47. weights += [self.bias]
  48. return weights
  49. def forward(self, x):
  50. shape = x.shape
  51. if nn.data_format == "NHWC":
  52. h,w,c = shape[1], shape[2], shape[3]
  53. output_shape = tf.stack ( (tf.shape(x)[0],
  54. self.deconv_length(w, self.strides, self.kernel_size, self.padding),
  55. self.deconv_length(h, self.strides, self.kernel_size, self.padding),
  56. self.out_ch) )
  57. strides = [1,self.strides,self.strides,1]
  58. else:
  59. c,h,w = shape[1], shape[2], shape[3]
  60. output_shape = tf.stack ( (tf.shape(x)[0],
  61. self.out_ch,
  62. self.deconv_length(w, self.strides, self.kernel_size, self.padding),
  63. self.deconv_length(h, self.strides, self.kernel_size, self.padding),
  64. ) )
  65. strides = [1,1,self.strides,self.strides]
  66. weight = self.weight
  67. if self.use_wscale:
  68. weight = weight * self.wscale
  69. x = tf.nn.conv2d_transpose(x, weight, output_shape, strides, padding=self.padding, data_format=nn.data_format)
  70. if self.use_bias:
  71. if nn.data_format == "NHWC":
  72. bias = tf.reshape (self.bias, (1,1,1,self.out_ch) )
  73. else:
  74. bias = tf.reshape (self.bias, (1,self.out_ch,1,1) )
  75. x = tf.add(x, bias)
  76. return x
  77. def __str__(self):
  78. r = f"{self.__class__.__name__} : in_ch:{self.in_ch} out_ch:{self.out_ch} "
  79. return r
  80. def deconv_length(self, dim_size, stride_size, kernel_size, padding):
  81. assert padding in {'SAME', 'VALID', 'FULL'}
  82. if dim_size is None:
  83. return None
  84. if padding == 'VALID':
  85. dim_size = dim_size * stride_size + max(kernel_size - stride_size, 0)
  86. elif padding == 'FULL':
  87. dim_size = dim_size * stride_size - (stride_size + kernel_size - 2)
  88. elif padding == 'SAME':
  89. dim_size = dim_size * stride_size
  90. return dim_size
  91. nn.Conv2DTranspose = Conv2DTranspose
Tip!

Press p or to see the previous file or, n or to see the next file

Comments

Loading...