1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
|
- import numpy as np
- from core.leras import nn
- tf = nn.tf
- class Conv2DTranspose(nn.LayerBase):
- """
- use_wscale enables weight scale (equalized learning rate)
- if kernel_initializer is None, it will be forced to random_normal
- """
- def __init__(self, in_ch, out_ch, kernel_size, strides=2, padding='SAME', use_bias=True, use_wscale=False, kernel_initializer=None, bias_initializer=None, trainable=True, dtype=None, **kwargs ):
- if not isinstance(strides, int):
- raise ValueError ("strides must be an int type")
- kernel_size = int(kernel_size)
- if dtype is None:
- dtype = nn.floatx
- self.in_ch = in_ch
- self.out_ch = out_ch
- self.kernel_size = kernel_size
- self.strides = strides
- self.padding = padding
- self.use_bias = use_bias
- self.use_wscale = use_wscale
- self.kernel_initializer = kernel_initializer
- self.bias_initializer = bias_initializer
- self.trainable = trainable
- self.dtype = dtype
- super().__init__(**kwargs)
- def build_weights(self):
- kernel_initializer = self.kernel_initializer
- if self.use_wscale:
- gain = 1.0 if self.kernel_size == 1 else np.sqrt(2)
- fan_in = self.kernel_size*self.kernel_size*self.in_ch
- he_std = gain / np.sqrt(fan_in) # He init
- self.wscale = tf.constant(he_std, dtype=self.dtype )
- if kernel_initializer is None:
- kernel_initializer = tf.initializers.random_normal(0, 1.0, dtype=self.dtype)
- #if kernel_initializer is None:
- # kernel_initializer = nn.initializers.ca()
- self.weight = tf.get_variable("weight", (self.kernel_size,self.kernel_size,self.out_ch,self.in_ch), dtype=self.dtype, initializer=kernel_initializer, trainable=self.trainable )
- if self.use_bias:
- bias_initializer = self.bias_initializer
- if bias_initializer is None:
- bias_initializer = tf.initializers.zeros(dtype=self.dtype)
- self.bias = tf.get_variable("bias", (self.out_ch,), dtype=self.dtype, initializer=bias_initializer, trainable=self.trainable )
- def get_weights(self):
- weights = [self.weight]
- if self.use_bias:
- weights += [self.bias]
- return weights
- def forward(self, x):
- shape = x.shape
- if nn.data_format == "NHWC":
- h,w,c = shape[1], shape[2], shape[3]
- output_shape = tf.stack ( (tf.shape(x)[0],
- self.deconv_length(w, self.strides, self.kernel_size, self.padding),
- self.deconv_length(h, self.strides, self.kernel_size, self.padding),
- self.out_ch) )
- strides = [1,self.strides,self.strides,1]
- else:
- c,h,w = shape[1], shape[2], shape[3]
- output_shape = tf.stack ( (tf.shape(x)[0],
- self.out_ch,
- self.deconv_length(w, self.strides, self.kernel_size, self.padding),
- self.deconv_length(h, self.strides, self.kernel_size, self.padding),
- ) )
- strides = [1,1,self.strides,self.strides]
- weight = self.weight
- if self.use_wscale:
- weight = weight * self.wscale
- x = tf.nn.conv2d_transpose(x, weight, output_shape, strides, padding=self.padding, data_format=nn.data_format)
- if self.use_bias:
- if nn.data_format == "NHWC":
- bias = tf.reshape (self.bias, (1,1,1,self.out_ch) )
- else:
- bias = tf.reshape (self.bias, (1,self.out_ch,1,1) )
- x = tf.add(x, bias)
- return x
- def __str__(self):
- r = f"{self.__class__.__name__} : in_ch:{self.in_ch} out_ch:{self.out_ch} "
- return r
- def deconv_length(self, dim_size, stride_size, kernel_size, padding):
- assert padding in {'SAME', 'VALID', 'FULL'}
- if dim_size is None:
- return None
- if padding == 'VALID':
- dim_size = dim_size * stride_size + max(kernel_size - stride_size, 0)
- elif padding == 'FULL':
- dim_size = dim_size * stride_size - (stride_size + kernel_size - 2)
- elif padding == 'SAME':
- dim_size = dim_size * stride_size
- return dim_size
- nn.Conv2DTranspose = Conv2DTranspose
|