1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
|
- import unittest
- from torchvision.transforms import Normalize, ToTensor, RandomHorizontalFlip, RandomCrop
- from super_gradients import Trainer
- from super_gradients.training import modify_params_for_qat
- from super_gradients.training.dataloaders.dataloaders import cifar10_train, cifar10_val
- from super_gradients.training.metrics import Accuracy, Top5
- from super_gradients.training.models import ResNet18
- class CodedQATLuanchTest(unittest.TestCase):
- def test_qat_launch(self):
- trainer = Trainer("test_launch_qat_with_minimal_changes")
- net = ResNet18(num_classes=10, arch_params={})
- train_params = {
- "max_epochs": 10,
- "lr_updates": [],
- "lr_decay_factor": 0.1,
- "lr_mode": "step",
- "lr_warmup_epochs": 0,
- "initial_lr": 0.1,
- "loss": "cross_entropy",
- "optimizer": "SGD",
- "criterion_params": {},
- "optimizer_params": {"weight_decay": 1e-4, "momentum": 0.9},
- "train_metrics_list": [Accuracy(), Top5()],
- "valid_metrics_list": [Accuracy(), Top5()],
- "metric_to_watch": "Accuracy",
- "greater_metric_to_watch_is_better": True,
- "ema": True,
- }
- train_dataset_params = {
- "transforms": [
- RandomCrop(size=32, padding=4),
- RandomHorizontalFlip(),
- ToTensor(),
- Normalize(mean=[0.4914, 0.4822, 0.4465], std=[0.2023, 0.1994, 0.2010]),
- ]
- }
- train_dataloader_params = {"batch_size": 256}
- val_dataset_params = {"transforms": [ToTensor(), Normalize(mean=[0.4914, 0.4822, 0.4465], std=[0.2023, 0.1994, 0.2010])]}
- val_dataloader_params = {"batch_size": 256}
- train_loader = cifar10_train(dataset_params=train_dataset_params, dataloader_params=train_dataloader_params)
- valid_loader = cifar10_val(dataset_params=val_dataset_params, dataloader_params=val_dataloader_params)
- trainer.train(
- model=net,
- training_params=train_params,
- train_loader=train_loader,
- valid_loader=valid_loader,
- )
- train_params, train_dataset_params, val_dataset_params, train_dataloader_params, val_dataloader_params = modify_params_for_qat(
- train_params, train_dataset_params, val_dataset_params, train_dataloader_params, val_dataloader_params
- )
- train_loader = cifar10_train(dataset_params=train_dataset_params, dataloader_params=train_dataloader_params)
- valid_loader = cifar10_val(dataset_params=val_dataset_params, dataloader_params=val_dataloader_params)
- trainer.qat(
- model=net,
- training_params=train_params,
- train_loader=train_loader,
- valid_loader=valid_loader,
- calib_loader=train_loader,
- )
- def test_ptq_launch(self):
- trainer = Trainer("test_launch_ptq_with_minimal_changes")
- net = ResNet18(num_classes=10, arch_params={})
- train_params = {
- "max_epochs": 10,
- "lr_updates": [],
- "lr_decay_factor": 0.1,
- "lr_mode": "step",
- "lr_warmup_epochs": 0,
- "initial_lr": 0.1,
- "loss": "cross_entropy",
- "optimizer": "SGD",
- "criterion_params": {},
- "optimizer_params": {"weight_decay": 1e-4, "momentum": 0.9},
- "train_metrics_list": [Accuracy(), Top5()],
- "valid_metrics_list": [Accuracy(), Top5()],
- "metric_to_watch": "Accuracy",
- "greater_metric_to_watch_is_better": True,
- "ema": True,
- }
- train_dataset_params = {
- "transforms": [
- RandomCrop(size=32, padding=4),
- RandomHorizontalFlip(),
- ToTensor(),
- Normalize(mean=[0.4914, 0.4822, 0.4465], std=[0.2023, 0.1994, 0.2010]),
- ]
- }
- train_dataloader_params = {"batch_size": 256}
- val_dataset_params = {"transforms": [ToTensor(), Normalize(mean=[0.4914, 0.4822, 0.4465], std=[0.2023, 0.1994, 0.2010])]}
- val_dataloader_params = {"batch_size": 256}
- train_loader = cifar10_train(dataset_params=train_dataset_params, dataloader_params=train_dataloader_params)
- valid_loader = cifar10_val(dataset_params=val_dataset_params, dataloader_params=val_dataloader_params)
- trainer.train(
- model=net,
- training_params=train_params,
- train_loader=train_loader,
- valid_loader=valid_loader,
- )
- train_params, train_dataset_params, val_dataset_params, train_dataloader_params, val_dataloader_params = modify_params_for_qat(
- train_params, train_dataset_params, val_dataset_params, train_dataloader_params, val_dataloader_params
- )
- train_loader = cifar10_train(dataset_params=train_dataset_params, dataloader_params=train_dataloader_params)
- valid_loader = cifar10_val(dataset_params=val_dataset_params, dataloader_params=val_dataloader_params)
- trainer.ptq(model=net, valid_loader=valid_loader, calib_loader=train_loader, valid_metrics_list=train_params["valid_metrics_list"])
- if __name__ == "__main__":
- unittest.main()
|