1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
|
- import unittest
- from typing import Union
- import pkg_resources
- from hydra import initialize_config_dir
- from hydra.core.global_hydra import GlobalHydra
- from hydra import compose
- from omegaconf import OmegaConf, open_dict, DictConfig
- from super_gradients import Trainer, init_trainer
- from super_gradients.common.registry.registry import register_pre_launch_callback
- from super_gradients.training.pre_launch_callbacks import PreLaunchCallback
- from super_gradients.common.environment.cfg_utils import normalize_path
- @register_pre_launch_callback()
- class PreLaunchTrainBatchSizeVerificationCallback(PreLaunchCallback):
- def __init__(self, batch_size):
- self.batch_size = batch_size
- def __call__(self, cfg: Union[dict, DictConfig]) -> Union[dict, DictConfig]:
- if cfg.dataset_params.train_dataloader_params.batch_size != self.batch_size:
- raise RuntimeError(f"Final selected batch size is {cfg.dataset_params.train_dataloader_params.batch_size}, expected: {self.batch_size}")
- return cfg
- @register_pre_launch_callback()
- class PreLaunchLRVerificationCallback(PreLaunchCallback):
- def __init__(self, lr):
- self.lr = lr
- def __call__(self, cfg: Union[dict, DictConfig]) -> Union[dict, DictConfig]:
- if cfg.training_hyperparams.initial_lr != self.lr:
- raise RuntimeError(f"Final selected lr is {cfg.training_hyperparams.initial_lr }, expected: {self.lr}")
- return cfg
- class TestAutoBatchSelectionSingleGPU(unittest.TestCase):
- def test_auto_batch_size_no_max_no_lr_adaptation(self):
- GlobalHydra.instance().clear()
- sg_recipes_dir = pkg_resources.resource_filename("super_gradients.recipes", "")
- init_trainer()
- with initialize_config_dir(config_dir=normalize_path(sg_recipes_dir), version_base="1.2"):
- cfg = compose(config_name="cifar10_resnet")
- cfg.experiment_name = "batch_size_selection_test_no_max"
- cfg.training_hyperparams.max_epochs = 1
- OmegaConf.set_struct(cfg, True)
- with open_dict(cfg):
- cfg.pre_launch_callbacks_list = [
- OmegaConf.create(
- {"AutoTrainBatchSizeSelectionCallback": {"min_batch_size": 64, "size_step": 10000, "num_forward_passes": 3, "scale_lr": False}}
- ),
- OmegaConf.create({"PreLaunchTrainBatchSizeVerificationCallback": {"batch_size": 64}}),
- OmegaConf.create({"PreLaunchLRVerificationCallback": {"lr": cfg.training_hyperparams.initial_lr}}),
- ]
- Trainer.train_from_config(cfg)
- def test_auto_batch_size_with_upper_limit_no_lr_adaptation(self):
- GlobalHydra.instance().clear()
- sg_recipes_dir = pkg_resources.resource_filename("super_gradients.recipes", "")
- init_trainer()
- with initialize_config_dir(config_dir=normalize_path(sg_recipes_dir), version_base="1.2"):
- cfg = compose(config_name="cifar10_resnet")
- cfg.experiment_name = "batch_size_selection_test_with_upper_limit"
- cfg.training_hyperparams.max_epochs = 1
- OmegaConf.set_struct(cfg, True)
- with open_dict(cfg):
- cfg.pre_launch_callbacks_list = [
- OmegaConf.create(
- {
- "AutoTrainBatchSizeSelectionCallback": {
- "min_batch_size": 32,
- "size_step": 32,
- "max_batch_size": 64,
- "num_forward_passes": 3,
- "scale_lr": False,
- "mode": "largest",
- }
- }
- ),
- OmegaConf.create({"PreLaunchTrainBatchSizeVerificationCallback": {"batch_size": 64}}),
- OmegaConf.create({"PreLaunchLRVerificationCallback": {"lr": cfg.training_hyperparams.initial_lr}}),
- OmegaConf.create({"PreLaunchLRVerificationCallback": {"lr": cfg.training_hyperparams.initial_lr}}),
- ]
- Trainer.train_from_config(cfg)
- def test_auto_batch_size_no_max_with_lr_adaptation(self):
- GlobalHydra.instance().clear()
- sg_recipes_dir = pkg_resources.resource_filename("super_gradients.recipes", "")
- init_trainer()
- with initialize_config_dir(config_dir=normalize_path(sg_recipes_dir), version_base="1.2"):
- cfg = compose(config_name="cifar10_resnet")
- cfg.experiment_name = "batch_size_selection_test_no_max"
- cfg.training_hyperparams.max_epochs = 1
- OmegaConf.set_struct(cfg, True)
- with open_dict(cfg):
- cfg.pre_launch_callbacks_list = [
- OmegaConf.create(
- {"AutoTrainBatchSizeSelectionCallback": {"min_batch_size": 64, "size_step": 10000, "num_forward_passes": 3, "mode": "largest"}}
- ),
- OmegaConf.create({"PreLaunchTrainBatchSizeVerificationCallback": {"batch_size": 64}}),
- OmegaConf.create(
- {
- "PreLaunchLRVerificationCallback": {
- "lr": cfg.training_hyperparams.initial_lr * 64 / cfg.dataset_params.train_dataloader_params.batch_size
- }
- }
- ),
- ]
- Trainer.train_from_config(cfg)
- def test_auto_batch_size_with_upper_limit_with_lr_adaptation(self):
- GlobalHydra.instance().clear()
- sg_recipes_dir = pkg_resources.resource_filename("super_gradients.recipes", "")
- init_trainer()
- with initialize_config_dir(config_dir=normalize_path(sg_recipes_dir), version_base="1.2"):
- cfg = compose(config_name="cifar10_resnet")
- cfg.experiment_name = "batch_size_selection_test_with_upper_limit"
- cfg.training_hyperparams.max_epochs = 1
- OmegaConf.set_struct(cfg, True)
- with open_dict(cfg):
- cfg.pre_launch_callbacks_list = [
- OmegaConf.create(
- {
- "AutoTrainBatchSizeSelectionCallback": {
- "min_batch_size": 32,
- "size_step": 32,
- "max_batch_size": 64,
- "num_forward_passes": 3,
- "mode": "largest",
- }
- }
- ),
- OmegaConf.create({"PreLaunchTrainBatchSizeVerificationCallback": {"batch_size": 64}}),
- OmegaConf.create(
- {
- "PreLaunchLRVerificationCallback": {
- "lr": cfg.training_hyperparams.initial_lr * 64 / cfg.dataset_params.train_dataloader_params.batch_size
- }
- }
- ),
- ]
- Trainer.train_from_config(cfg)
- if __name__ == "__main__":
- unittest.main()
|