Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

automatic_batch_selection_single_gpu_test.py 7.0 KB

You have to be logged in to leave a comment. Sign In
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
  1. import unittest
  2. from typing import Union
  3. import pkg_resources
  4. from hydra import initialize_config_dir
  5. from hydra.core.global_hydra import GlobalHydra
  6. from hydra import compose
  7. from omegaconf import OmegaConf, open_dict, DictConfig
  8. from super_gradients import Trainer, init_trainer
  9. from super_gradients.common.registry.registry import register_pre_launch_callback
  10. from super_gradients.training.pre_launch_callbacks import PreLaunchCallback
  11. from super_gradients.common.environment.cfg_utils import normalize_path
  12. @register_pre_launch_callback()
  13. class PreLaunchTrainBatchSizeVerificationCallback(PreLaunchCallback):
  14. def __init__(self, batch_size):
  15. self.batch_size = batch_size
  16. def __call__(self, cfg: Union[dict, DictConfig]) -> Union[dict, DictConfig]:
  17. if cfg.dataset_params.train_dataloader_params.batch_size != self.batch_size:
  18. raise RuntimeError(f"Final selected batch size is {cfg.dataset_params.train_dataloader_params.batch_size}, expected: {self.batch_size}")
  19. return cfg
  20. @register_pre_launch_callback()
  21. class PreLaunchLRVerificationCallback(PreLaunchCallback):
  22. def __init__(self, lr):
  23. self.lr = lr
  24. def __call__(self, cfg: Union[dict, DictConfig]) -> Union[dict, DictConfig]:
  25. if cfg.training_hyperparams.initial_lr != self.lr:
  26. raise RuntimeError(f"Final selected lr is {cfg.training_hyperparams.initial_lr }, expected: {self.lr}")
  27. return cfg
  28. class TestAutoBatchSelectionSingleGPU(unittest.TestCase):
  29. def test_auto_batch_size_no_max_no_lr_adaptation(self):
  30. GlobalHydra.instance().clear()
  31. sg_recipes_dir = pkg_resources.resource_filename("super_gradients.recipes", "")
  32. init_trainer()
  33. with initialize_config_dir(config_dir=normalize_path(sg_recipes_dir), version_base="1.2"):
  34. cfg = compose(config_name="cifar10_resnet")
  35. cfg.experiment_name = "batch_size_selection_test_no_max"
  36. cfg.training_hyperparams.max_epochs = 1
  37. OmegaConf.set_struct(cfg, True)
  38. with open_dict(cfg):
  39. cfg.pre_launch_callbacks_list = [
  40. OmegaConf.create(
  41. {"AutoTrainBatchSizeSelectionCallback": {"min_batch_size": 64, "size_step": 10000, "num_forward_passes": 3, "scale_lr": False}}
  42. ),
  43. OmegaConf.create({"PreLaunchTrainBatchSizeVerificationCallback": {"batch_size": 64}}),
  44. OmegaConf.create({"PreLaunchLRVerificationCallback": {"lr": cfg.training_hyperparams.initial_lr}}),
  45. ]
  46. Trainer.train_from_config(cfg)
  47. def test_auto_batch_size_with_upper_limit_no_lr_adaptation(self):
  48. GlobalHydra.instance().clear()
  49. sg_recipes_dir = pkg_resources.resource_filename("super_gradients.recipes", "")
  50. init_trainer()
  51. with initialize_config_dir(config_dir=normalize_path(sg_recipes_dir), version_base="1.2"):
  52. cfg = compose(config_name="cifar10_resnet")
  53. cfg.experiment_name = "batch_size_selection_test_with_upper_limit"
  54. cfg.training_hyperparams.max_epochs = 1
  55. OmegaConf.set_struct(cfg, True)
  56. with open_dict(cfg):
  57. cfg.pre_launch_callbacks_list = [
  58. OmegaConf.create(
  59. {
  60. "AutoTrainBatchSizeSelectionCallback": {
  61. "min_batch_size": 32,
  62. "size_step": 32,
  63. "max_batch_size": 64,
  64. "num_forward_passes": 3,
  65. "scale_lr": False,
  66. "mode": "largest",
  67. }
  68. }
  69. ),
  70. OmegaConf.create({"PreLaunchTrainBatchSizeVerificationCallback": {"batch_size": 64}}),
  71. OmegaConf.create({"PreLaunchLRVerificationCallback": {"lr": cfg.training_hyperparams.initial_lr}}),
  72. OmegaConf.create({"PreLaunchLRVerificationCallback": {"lr": cfg.training_hyperparams.initial_lr}}),
  73. ]
  74. Trainer.train_from_config(cfg)
  75. def test_auto_batch_size_no_max_with_lr_adaptation(self):
  76. GlobalHydra.instance().clear()
  77. sg_recipes_dir = pkg_resources.resource_filename("super_gradients.recipes", "")
  78. init_trainer()
  79. with initialize_config_dir(config_dir=normalize_path(sg_recipes_dir), version_base="1.2"):
  80. cfg = compose(config_name="cifar10_resnet")
  81. cfg.experiment_name = "batch_size_selection_test_no_max"
  82. cfg.training_hyperparams.max_epochs = 1
  83. OmegaConf.set_struct(cfg, True)
  84. with open_dict(cfg):
  85. cfg.pre_launch_callbacks_list = [
  86. OmegaConf.create(
  87. {"AutoTrainBatchSizeSelectionCallback": {"min_batch_size": 64, "size_step": 10000, "num_forward_passes": 3, "mode": "largest"}}
  88. ),
  89. OmegaConf.create({"PreLaunchTrainBatchSizeVerificationCallback": {"batch_size": 64}}),
  90. OmegaConf.create(
  91. {
  92. "PreLaunchLRVerificationCallback": {
  93. "lr": cfg.training_hyperparams.initial_lr * 64 / cfg.dataset_params.train_dataloader_params.batch_size
  94. }
  95. }
  96. ),
  97. ]
  98. Trainer.train_from_config(cfg)
  99. def test_auto_batch_size_with_upper_limit_with_lr_adaptation(self):
  100. GlobalHydra.instance().clear()
  101. sg_recipes_dir = pkg_resources.resource_filename("super_gradients.recipes", "")
  102. init_trainer()
  103. with initialize_config_dir(config_dir=normalize_path(sg_recipes_dir), version_base="1.2"):
  104. cfg = compose(config_name="cifar10_resnet")
  105. cfg.experiment_name = "batch_size_selection_test_with_upper_limit"
  106. cfg.training_hyperparams.max_epochs = 1
  107. OmegaConf.set_struct(cfg, True)
  108. with open_dict(cfg):
  109. cfg.pre_launch_callbacks_list = [
  110. OmegaConf.create(
  111. {
  112. "AutoTrainBatchSizeSelectionCallback": {
  113. "min_batch_size": 32,
  114. "size_step": 32,
  115. "max_batch_size": 64,
  116. "num_forward_passes": 3,
  117. "mode": "largest",
  118. }
  119. }
  120. ),
  121. OmegaConf.create({"PreLaunchTrainBatchSizeVerificationCallback": {"batch_size": 64}}),
  122. OmegaConf.create(
  123. {
  124. "PreLaunchLRVerificationCallback": {
  125. "lr": cfg.training_hyperparams.initial_lr * 64 / cfg.dataset_params.train_dataloader_params.batch_size
  126. }
  127. }
  128. ),
  129. ]
  130. Trainer.train_from_config(cfg)
  131. if __name__ == "__main__":
  132. unittest.main()
Tip!

Press p or to see the previous file or, n or to see the next file

Comments

Loading...