Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

imagenet_efficientnet_train_params.yaml 826 B

You have to be logged in to leave a comment. Sign In
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
  1. defaults:
  2. - default_train_params
  3. max_epochs: 550
  4. lr_updates:
  5. _target_: numpy.arange
  6. start: 0
  7. stop: 500
  8. step: 3
  9. lr_mode: step
  10. lr_decay_factor: 0.963
  11. initial_lr: 0.032
  12. optimizer: RMSpropTF
  13. optimizer_params:
  14. eps: 0.001
  15. weight_decay: 1e-5
  16. lr_warmup_epochs: 5
  17. loss: cross_entropy
  18. zero_weight_decay_on_bias_and_bn: True
  19. ema: True
  20. loss_logging_items_names: [Loss]
  21. metric_to_watch: Accuracy
  22. greater_metric_to_watch_is_better: True
  23. train_metrics_list: # metrics for evaluation
  24. - _target_: super_gradients.training.metrics.Accuracy
  25. - _target_: super_gradients.training.metrics.Top5
  26. valid_metrics_list: # metrics for evaluation
  27. - _target_: super_gradients.training.metrics.Accuracy
  28. - _target_: super_gradients.training.metrics.Top5
  29. _convert_: all
Tip!

Press p or to see the previous file or, n or to see the next file

Comments

Loading...