Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

default_train_params.yaml 3.3 KB

You have to be logged in to leave a comment. Sign In
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
  1. lr_mode: # Learning rate scheduling policy, one of ['step','poly','cosine','function']
  2. lr_schedule_function: # Learning rate scheduling function to be used when `lr_mode` is 'function'.
  3. lr_warmup_epochs: 0 # number of epochs for learning rate warm up - see https://arxiv.org/pdf/1706.02677.pdf (Section 2.2).
  4. cosine_final_lr_ratio: 0.01 # final learning rate ratio (only relevant when `lr_mode`='cosine')
  5. optimizer: SGD # Optimization algorithm. One of ['Adam','SGD','RMSProp'] corresponding to the torch.optim optimizers
  6. optimizer_params: {} # when `optimizer` is one of ['Adam','SGD','RMSProp'], it will be initialized with optimizer_params.
  7. load_opt_params: True # Whether to load the optimizers parameters as well when loading a model's checkpoint
  8. zero_weight_decay_on_bias_and_bn: False # whether to apply weight decay on batch normalization parameters or not
  9. loss: # Loss function for training (str as one of SuperGradient's built in options, or torch.nn.module)
  10. criterion_params: {} # when `loss` is one of SuperGradient's built in options, it will be initialized with criterion_params.
  11. ema: False # whether to use Model Exponential Moving Average
  12. ema_params: # parameters for the ema model.
  13. decay: 0.9999
  14. beta: 15
  15. exp_activation: True
  16. train_metrics_list: [] # Metrics to log during training. For more information on torchmetrics see https://torchmetrics.rtfd.io/en/latest/.
  17. valid_metrics_list: [] # Metrics to log during validation. For more information on torchmetrics see https://torchmetrics.rtfd.io/en/latest/
  18. loss_logging_items_names: [Loss] # the list of names/titles for the outputs returned from the loss functions forward pass
  19. metric_to_watch: Accuracy # will be the metric which the model checkpoint will be saved according to
  20. greater_metric_to_watch_is_better: True # When choosing a model's checkpoint to be saved, the best achieved model is the one that maximizes the metric_to_watch when this parameter is set to True
  21. launch_tensorboard: False # Whether to launch a TensorBoard process.
  22. tensorboard_port: # port for tensorboard process
  23. tb_files_user_prompt: False # Asks User for Tensorboard Deletion Prompt
  24. save_tensorboard_to_s3: False # whether to save tb to s3
  25. precise_bn: False # Whether to use precise_bn calculation during the training.
  26. precise_bn_batch_size: # the effective batch size we want to calculate the batchnorm on.
  27. silent_mode: False # Silents the Print outs
  28. mixed_precision: False # Whether to use mixed precision or not.
  29. save_ckpt_epoch_list: [] # indices where the ckpt will save automatically
  30. average_best_models: True # If set, a snapshot dictionary file and the average model will be saved
  31. dataset_statistics: False # add a dataset statistical analysis and sample images to tensorboard
  32. batch_accumulate: 1 # number of batches to accumulate before every backward pass
  33. run_validation_freq: 1 # The frequency in which validation is performed during training
  34. save_model: True # Whether to save the model checkpoints
  35. seed: 42 # seed for reproducibility
  36. phase_callbacks: [] # list of callbacks to be applied at specific phases.
  37. log_installed_packages: True # when set, the list of all installed packages (and their versions) will be written to the tensorboard
  38. save_full_train_log: False # When set, a full log (of all super_gradients modules, including uncaught exceptions from any other module) of training will be saved
  39. _convert_: all
Tip!

Press p or to see the previous file or, n or to see the next file

Comments

Loading...