1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
|
- from .utils import load_torch_file, transformers_convert, state_dict_prefix_replace
- import os
- import torch
- import json
- import ldm_patched.modules.ops
- import ldm_patched.modules.model_patcher
- import ldm_patched.modules.model_management
- import ldm_patched.modules.utils
- import ldm_patched.modules.clip_model
- class Output:
- def __getitem__(self, key):
- return getattr(self, key)
- def __setitem__(self, key, item):
- setattr(self, key, item)
- def clip_preprocess(image, size=224):
- mean = torch.tensor([ 0.48145466,0.4578275,0.40821073], device=image.device, dtype=image.dtype)
- std = torch.tensor([0.26862954,0.26130258,0.27577711], device=image.device, dtype=image.dtype)
- image = image.movedim(-1, 1)
- if not (image.shape[2] == size and image.shape[3] == size):
- scale = (size / min(image.shape[2], image.shape[3]))
- image = torch.nn.functional.interpolate(image, size=(round(scale * image.shape[2]), round(scale * image.shape[3])), mode="bicubic", antialias=True)
- h = (image.shape[2] - size)//2
- w = (image.shape[3] - size)//2
- image = image[:,:,h:h+size,w:w+size]
- image = torch.clip((255. * image), 0, 255).round() / 255.0
- return (image - mean.view([3,1,1])) / std.view([3,1,1])
- class ClipVisionModel():
- def __init__(self, json_config):
- with open(json_config) as f:
- config = json.load(f)
- self.load_device = ldm_patched.modules.model_management.text_encoder_device()
- offload_device = ldm_patched.modules.model_management.text_encoder_offload_device()
- self.dtype = ldm_patched.modules.model_management.text_encoder_dtype(self.load_device)
- self.model = ldm_patched.modules.clip_model.CLIPVisionModelProjection(config, self.dtype, offload_device, ldm_patched.modules.ops.manual_cast)
- self.model.eval()
- self.patcher = ldm_patched.modules.model_patcher.ModelPatcher(self.model, load_device=self.load_device, offload_device=offload_device)
- def load_sd(self, sd):
- return self.model.load_state_dict(sd, strict=False)
- def get_sd(self):
- return self.model.state_dict()
- def encode_image(self, image):
- ldm_patched.modules.model_management.load_model_gpu(self.patcher)
- pixel_values = clip_preprocess(image.to(self.load_device)).float()
- out = self.model(pixel_values=pixel_values, intermediate_output=-2)
- outputs = Output()
- outputs["last_hidden_state"] = out[0].to(ldm_patched.modules.model_management.intermediate_device())
- outputs["image_embeds"] = out[2].to(ldm_patched.modules.model_management.intermediate_device())
- outputs["penultimate_hidden_states"] = out[1].to(ldm_patched.modules.model_management.intermediate_device())
- return outputs
- def convert_to_transformers(sd, prefix):
- sd_k = sd.keys()
- if "{}transformer.resblocks.0.attn.in_proj_weight".format(prefix) in sd_k:
- keys_to_replace = {
- "{}class_embedding".format(prefix): "vision_model.embeddings.class_embedding",
- "{}conv1.weight".format(prefix): "vision_model.embeddings.patch_embedding.weight",
- "{}positional_embedding".format(prefix): "vision_model.embeddings.position_embedding.weight",
- "{}ln_post.bias".format(prefix): "vision_model.post_layernorm.bias",
- "{}ln_post.weight".format(prefix): "vision_model.post_layernorm.weight",
- "{}ln_pre.bias".format(prefix): "vision_model.pre_layrnorm.bias",
- "{}ln_pre.weight".format(prefix): "vision_model.pre_layrnorm.weight",
- }
- for x in keys_to_replace:
- if x in sd_k:
- sd[keys_to_replace[x]] = sd.pop(x)
- if "{}proj".format(prefix) in sd_k:
- sd['visual_projection.weight'] = sd.pop("{}proj".format(prefix)).transpose(0, 1)
- sd = transformers_convert(sd, prefix, "vision_model.", 48)
- else:
- replace_prefix = {prefix: ""}
- sd = state_dict_prefix_replace(sd, replace_prefix)
- return sd
- def load_clipvision_from_sd(sd, prefix="", convert_keys=False):
- if convert_keys:
- sd = convert_to_transformers(sd, prefix)
- if "vision_model.encoder.layers.47.layer_norm1.weight" in sd:
- json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_g.json")
- elif "vision_model.encoder.layers.30.layer_norm1.weight" in sd:
- json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_h.json")
- elif "vision_model.encoder.layers.22.layer_norm1.weight" in sd:
- json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_vitl.json")
- else:
- return None
- clip = ClipVisionModel(json_config)
- m, u = clip.load_sd(sd)
- if len(m) > 0:
- print("extra clip vision:", m)
- u = set(u)
- keys = list(sd.keys())
- for k in keys:
- if k not in u:
- t = sd.pop(k)
- del t
- return clip
- def load(ckpt_path):
- sd = load_torch_file(ckpt_path)
- if "visual.transformer.resblocks.0.attn.in_proj_weight" in sd:
- return load_clipvision_from_sd(sd, prefix="visual.", convert_keys=True)
- else:
- return load_clipvision_from_sd(sd)
|