Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

clip_vision.py 5.1 KB

You have to be logged in to leave a comment. Sign In
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
  1. from .utils import load_torch_file, transformers_convert, state_dict_prefix_replace
  2. import os
  3. import torch
  4. import json
  5. import ldm_patched.modules.ops
  6. import ldm_patched.modules.model_patcher
  7. import ldm_patched.modules.model_management
  8. import ldm_patched.modules.utils
  9. import ldm_patched.modules.clip_model
  10. class Output:
  11. def __getitem__(self, key):
  12. return getattr(self, key)
  13. def __setitem__(self, key, item):
  14. setattr(self, key, item)
  15. def clip_preprocess(image, size=224):
  16. mean = torch.tensor([ 0.48145466,0.4578275,0.40821073], device=image.device, dtype=image.dtype)
  17. std = torch.tensor([0.26862954,0.26130258,0.27577711], device=image.device, dtype=image.dtype)
  18. image = image.movedim(-1, 1)
  19. if not (image.shape[2] == size and image.shape[3] == size):
  20. scale = (size / min(image.shape[2], image.shape[3]))
  21. image = torch.nn.functional.interpolate(image, size=(round(scale * image.shape[2]), round(scale * image.shape[3])), mode="bicubic", antialias=True)
  22. h = (image.shape[2] - size)//2
  23. w = (image.shape[3] - size)//2
  24. image = image[:,:,h:h+size,w:w+size]
  25. image = torch.clip((255. * image), 0, 255).round() / 255.0
  26. return (image - mean.view([3,1,1])) / std.view([3,1,1])
  27. class ClipVisionModel():
  28. def __init__(self, json_config):
  29. with open(json_config) as f:
  30. config = json.load(f)
  31. self.load_device = ldm_patched.modules.model_management.text_encoder_device()
  32. offload_device = ldm_patched.modules.model_management.text_encoder_offload_device()
  33. self.dtype = ldm_patched.modules.model_management.text_encoder_dtype(self.load_device)
  34. self.model = ldm_patched.modules.clip_model.CLIPVisionModelProjection(config, self.dtype, offload_device, ldm_patched.modules.ops.manual_cast)
  35. self.model.eval()
  36. self.patcher = ldm_patched.modules.model_patcher.ModelPatcher(self.model, load_device=self.load_device, offload_device=offload_device)
  37. def load_sd(self, sd):
  38. return self.model.load_state_dict(sd, strict=False)
  39. def get_sd(self):
  40. return self.model.state_dict()
  41. def encode_image(self, image):
  42. ldm_patched.modules.model_management.load_model_gpu(self.patcher)
  43. pixel_values = clip_preprocess(image.to(self.load_device)).float()
  44. out = self.model(pixel_values=pixel_values, intermediate_output=-2)
  45. outputs = Output()
  46. outputs["last_hidden_state"] = out[0].to(ldm_patched.modules.model_management.intermediate_device())
  47. outputs["image_embeds"] = out[2].to(ldm_patched.modules.model_management.intermediate_device())
  48. outputs["penultimate_hidden_states"] = out[1].to(ldm_patched.modules.model_management.intermediate_device())
  49. return outputs
  50. def convert_to_transformers(sd, prefix):
  51. sd_k = sd.keys()
  52. if "{}transformer.resblocks.0.attn.in_proj_weight".format(prefix) in sd_k:
  53. keys_to_replace = {
  54. "{}class_embedding".format(prefix): "vision_model.embeddings.class_embedding",
  55. "{}conv1.weight".format(prefix): "vision_model.embeddings.patch_embedding.weight",
  56. "{}positional_embedding".format(prefix): "vision_model.embeddings.position_embedding.weight",
  57. "{}ln_post.bias".format(prefix): "vision_model.post_layernorm.bias",
  58. "{}ln_post.weight".format(prefix): "vision_model.post_layernorm.weight",
  59. "{}ln_pre.bias".format(prefix): "vision_model.pre_layrnorm.bias",
  60. "{}ln_pre.weight".format(prefix): "vision_model.pre_layrnorm.weight",
  61. }
  62. for x in keys_to_replace:
  63. if x in sd_k:
  64. sd[keys_to_replace[x]] = sd.pop(x)
  65. if "{}proj".format(prefix) in sd_k:
  66. sd['visual_projection.weight'] = sd.pop("{}proj".format(prefix)).transpose(0, 1)
  67. sd = transformers_convert(sd, prefix, "vision_model.", 48)
  68. else:
  69. replace_prefix = {prefix: ""}
  70. sd = state_dict_prefix_replace(sd, replace_prefix)
  71. return sd
  72. def load_clipvision_from_sd(sd, prefix="", convert_keys=False):
  73. if convert_keys:
  74. sd = convert_to_transformers(sd, prefix)
  75. if "vision_model.encoder.layers.47.layer_norm1.weight" in sd:
  76. json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_g.json")
  77. elif "vision_model.encoder.layers.30.layer_norm1.weight" in sd:
  78. json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_h.json")
  79. elif "vision_model.encoder.layers.22.layer_norm1.weight" in sd:
  80. json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_vitl.json")
  81. else:
  82. return None
  83. clip = ClipVisionModel(json_config)
  84. m, u = clip.load_sd(sd)
  85. if len(m) > 0:
  86. print("extra clip vision:", m)
  87. u = set(u)
  88. keys = list(sd.keys())
  89. for k in keys:
  90. if k not in u:
  91. t = sd.pop(k)
  92. del t
  93. return clip
  94. def load(ckpt_path):
  95. sd = load_torch_file(ckpt_path)
  96. if "visual.transformer.resblocks.0.attn.in_proj_weight" in sd:
  97. return load_clipvision_from_sd(sd, prefix="visual.", convert_keys=True)
  98. else:
  99. return load_clipvision_from_sd(sd)
Tip!

Press p or to see the previous file or, n or to see the next file

Comments

Loading...