1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
|
- import sys
- import modules.config
- import numpy as np
- import torch
- from extras.GroundingDINO.util.inference import default_groundingdino
- from extras.sam.predictor import SamPredictor
- from rembg import remove, new_session
- from segment_anything import sam_model_registry
- from segment_anything.utils.amg import remove_small_regions
- class SAMOptions:
- def __init__(self,
- # GroundingDINO
- dino_prompt: str = '',
- dino_box_threshold=0.3,
- dino_text_threshold=0.25,
- dino_erode_or_dilate=0,
- dino_debug=False,
- # SAM
- max_detections=2,
- model_type='vit_b'
- ):
- self.dino_prompt = dino_prompt
- self.dino_box_threshold = dino_box_threshold
- self.dino_text_threshold = dino_text_threshold
- self.dino_erode_or_dilate = dino_erode_or_dilate
- self.dino_debug = dino_debug
- self.max_detections = max_detections
- self.model_type = model_type
- def optimize_masks(masks: torch.Tensor) -> torch.Tensor:
- """
- removes small disconnected regions and holes
- """
- fine_masks = []
- for mask in masks.to('cpu').numpy(): # masks: [num_masks, 1, h, w]
- fine_masks.append(remove_small_regions(mask[0], 400, mode="holes")[0])
- masks = np.stack(fine_masks, axis=0)[:, np.newaxis]
- return torch.from_numpy(masks)
- def generate_mask_from_image(image: np.ndarray, mask_model: str = 'sam', extras=None,
- sam_options: SAMOptions | None = SAMOptions) -> tuple[np.ndarray | None, int | None, int | None, int | None]:
- dino_detection_count = 0
- sam_detection_count = 0
- sam_detection_on_mask_count = 0
- if image is None:
- return None, dino_detection_count, sam_detection_count, sam_detection_on_mask_count
- if extras is None:
- extras = {}
- if 'image' in image:
- image = image['image']
- if mask_model != 'sam' or sam_options is None:
- result = remove(
- image,
- session=new_session(mask_model, **extras),
- only_mask=True,
- **extras
- )
- return result, dino_detection_count, sam_detection_count, sam_detection_on_mask_count
- detections, boxes, logits, phrases = default_groundingdino(
- image=image,
- caption=sam_options.dino_prompt,
- box_threshold=sam_options.dino_box_threshold,
- text_threshold=sam_options.dino_text_threshold
- )
- H, W = image.shape[0], image.shape[1]
- boxes = boxes * torch.Tensor([W, H, W, H])
- boxes[:, :2] = boxes[:, :2] - boxes[:, 2:] / 2
- boxes[:, 2:] = boxes[:, 2:] + boxes[:, :2]
- sam_checkpoint = modules.config.download_sam_model(sam_options.model_type)
- sam = sam_model_registry[sam_options.model_type](checkpoint=sam_checkpoint)
- sam_predictor = SamPredictor(sam)
- final_mask_tensor = torch.zeros((image.shape[0], image.shape[1]))
- dino_detection_count = boxes.size(0)
- if dino_detection_count > 0:
- sam_predictor.set_image(image)
- if sam_options.dino_erode_or_dilate != 0:
- for index in range(boxes.size(0)):
- assert boxes.size(1) == 4
- boxes[index][0] -= sam_options.dino_erode_or_dilate
- boxes[index][1] -= sam_options.dino_erode_or_dilate
- boxes[index][2] += sam_options.dino_erode_or_dilate
- boxes[index][3] += sam_options.dino_erode_or_dilate
- if sam_options.dino_debug:
- from PIL import ImageDraw, Image
- debug_dino_image = Image.new("RGB", (image.shape[1], image.shape[0]), color="black")
- draw = ImageDraw.Draw(debug_dino_image)
- for box in boxes.numpy():
- draw.rectangle(box.tolist(), fill="white")
- return np.array(debug_dino_image), dino_detection_count, sam_detection_count, sam_detection_on_mask_count
- transformed_boxes = sam_predictor.transform.apply_boxes_torch(boxes, image.shape[:2])
- masks, _, _ = sam_predictor.predict_torch(
- point_coords=None,
- point_labels=None,
- boxes=transformed_boxes,
- multimask_output=False,
- )
- masks = optimize_masks(masks)
- sam_detection_count = len(masks)
- if sam_options.max_detections == 0:
- sam_options.max_detections = sys.maxsize
- sam_objects = min(len(logits), sam_options.max_detections)
- for obj_ind in range(sam_objects):
- mask_tensor = masks[obj_ind][0]
- final_mask_tensor += mask_tensor
- sam_detection_on_mask_count += 1
- final_mask_tensor = (final_mask_tensor > 0).to('cpu').numpy()
- mask_image = np.dstack((final_mask_tensor, final_mask_tensor, final_mask_tensor)) * 255
- mask_image = np.array(mask_image, dtype=np.uint8)
- return mask_image, dino_detection_count, sam_detection_count, sam_detection_on_mask_count
|