1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
|
- import numpy as np
- from tensorflow.python.ops import control_flow_ops, state_ops
- from core.leras import nn
- tf = nn.tf
- class RMSprop(nn.OptimizerBase):
- def __init__(self, lr=0.001, rho=0.9, lr_dropout=1.0, lr_cos=0, clipnorm=0.0, name=None, **kwargs):
- super().__init__(name=name)
- if name is None:
- raise ValueError('name must be defined.')
- self.lr_dropout = lr_dropout
- self.lr_cos = lr_cos
- self.lr = lr
- self.rho = rho
- self.clipnorm = clipnorm
- with tf.device('/CPU:0') :
- with tf.variable_scope(self.name):
-
- self.iterations = tf.Variable(0, dtype=tf.int64, name='iters')
- self.accumulators_dict = {}
- self.lr_rnds_dict = {}
- def get_weights(self):
- return [self.iterations] + list(self.accumulators_dict.values())
- def initialize_variables(self, trainable_weights, vars_on_cpu=True, lr_dropout_on_cpu=False):
- # Initialize here all trainable variables used in training
- e = tf.device('/CPU:0') if vars_on_cpu else None
- if e: e.__enter__()
- with tf.variable_scope(self.name):
- accumulators = { v.name : tf.get_variable ( f'acc_{v.name}'.replace(':','_'), v.shape, dtype=v.dtype, initializer=tf.initializers.constant(0.0), trainable=False) for v in trainable_weights }
- self.accumulators_dict.update ( accumulators)
- if self.lr_dropout != 1.0:
- e = tf.device('/CPU:0') if lr_dropout_on_cpu else None
- if e: e.__enter__()
- lr_rnds = [ nn.random_binomial( v.shape, p=self.lr_dropout, dtype=v.dtype) for v in trainable_weights ]
- if e: e.__exit__(None, None, None)
- self.lr_rnds_dict.update ( { v.name : rnd for v,rnd in zip(trainable_weights,lr_rnds) } )
- if e: e.__exit__(None, None, None)
- def get_update_op(self, grads_vars):
- updates = []
- if self.clipnorm > 0.0:
- norm = tf.sqrt( sum([tf.reduce_sum(tf.square(tf.cast(g, tf.float32))) for g,v in grads_vars]))
- updates += [ state_ops.assign_add( self.iterations, 1) ]
- for i, (g,v) in enumerate(grads_vars):
- if self.clipnorm > 0.0:
- g = self.tf_clip_norm(g, self.clipnorm, tf.cast(norm, g.dtype) )
- a = self.accumulators_dict[ v.name ]
- new_a = self.rho * a + (1. - self.rho) * tf.square(g)
- lr = tf.constant(self.lr, g.dtype)
- if self.lr_cos != 0:
- lr *= (tf.cos( tf.cast(self.iterations, g.dtype) * (2*3.1415926535/ float(self.lr_cos) ) ) + 1.0) / 2.0
- v_diff = - lr * g / (tf.sqrt(new_a) + np.finfo( g.dtype.as_numpy_dtype ).resolution )
- if self.lr_dropout != 1.0:
- lr_rnd = self.lr_rnds_dict[v.name]
- v_diff *= lr_rnd
- new_v = v + v_diff
- updates.append (state_ops.assign(a, new_a))
- updates.append (state_ops.assign(v, new_v))
- return control_flow_ops.group ( *updates, name=self.name+'_updates')
- nn.RMSprop = RMSprop
|