Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

PatchDiscriminator.py 7.4 KB

You have to be logged in to leave a comment. Sign In
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
  1. import numpy as np
  2. from core.leras import nn
  3. tf = nn.tf
  4. patch_discriminator_kernels = \
  5. { 1 : (512, [ [1,1] ]),
  6. 2 : (512, [ [2,1] ]),
  7. 3 : (512, [ [2,1], [2,1] ]),
  8. 4 : (512, [ [2,2], [2,2] ]),
  9. 5 : (512, [ [3,2], [2,2] ]),
  10. 6 : (512, [ [4,2], [2,2] ]),
  11. 7 : (512, [ [3,2], [3,2] ]),
  12. 8 : (512, [ [4,2], [3,2] ]),
  13. 9 : (512, [ [3,2], [4,2] ]),
  14. 10 : (512, [ [4,2], [4,2] ]),
  15. 11 : (512, [ [3,2], [3,2], [2,1] ]),
  16. 12 : (512, [ [4,2], [3,2], [2,1] ]),
  17. 13 : (512, [ [3,2], [4,2], [2,1] ]),
  18. 14 : (512, [ [4,2], [4,2], [2,1] ]),
  19. 15 : (512, [ [3,2], [3,2], [3,1] ]),
  20. 16 : (512, [ [4,2], [3,2], [3,1] ]),
  21. 17 : (512, [ [3,2], [4,2], [3,1] ]),
  22. 18 : (512, [ [4,2], [4,2], [3,1] ]),
  23. 19 : (512, [ [3,2], [3,2], [4,1] ]),
  24. 20 : (512, [ [4,2], [3,2], [4,1] ]),
  25. 21 : (512, [ [3,2], [4,2], [4,1] ]),
  26. 22 : (512, [ [4,2], [4,2], [4,1] ]),
  27. 23 : (256, [ [3,2], [3,2], [3,2], [2,1] ]),
  28. 24 : (256, [ [4,2], [3,2], [3,2], [2,1] ]),
  29. 25 : (256, [ [3,2], [4,2], [3,2], [2,1] ]),
  30. 26 : (256, [ [4,2], [4,2], [3,2], [2,1] ]),
  31. 27 : (256, [ [3,2], [4,2], [4,2], [2,1] ]),
  32. 28 : (256, [ [4,2], [3,2], [4,2], [2,1] ]),
  33. 29 : (256, [ [3,2], [4,2], [4,2], [2,1] ]),
  34. 30 : (256, [ [4,2], [4,2], [4,2], [2,1] ]),
  35. 31 : (256, [ [3,2], [3,2], [3,2], [3,1] ]),
  36. 32 : (256, [ [4,2], [3,2], [3,2], [3,1] ]),
  37. 33 : (256, [ [3,2], [4,2], [3,2], [3,1] ]),
  38. 34 : (256, [ [4,2], [4,2], [3,2], [3,1] ]),
  39. 35 : (256, [ [3,2], [4,2], [4,2], [3,1] ]),
  40. 36 : (256, [ [4,2], [3,2], [4,2], [3,1] ]),
  41. 37 : (256, [ [3,2], [4,2], [4,2], [3,1] ]),
  42. 38 : (256, [ [4,2], [4,2], [4,2], [3,1] ]),
  43. 39 : (256, [ [3,2], [3,2], [3,2], [4,1] ]),
  44. 40 : (256, [ [4,2], [3,2], [3,2], [4,1] ]),
  45. 41 : (256, [ [3,2], [4,2], [3,2], [4,1] ]),
  46. 42 : (256, [ [4,2], [4,2], [3,2], [4,1] ]),
  47. 43 : (256, [ [3,2], [4,2], [4,2], [4,1] ]),
  48. 44 : (256, [ [4,2], [3,2], [4,2], [4,1] ]),
  49. 45 : (256, [ [3,2], [4,2], [4,2], [4,1] ]),
  50. 46 : (256, [ [4,2], [4,2], [4,2], [4,1] ]),
  51. }
  52. class PatchDiscriminator(nn.ModelBase):
  53. def on_build(self, patch_size, in_ch, base_ch=None, conv_kernel_initializer=None):
  54. suggested_base_ch, kernels_strides = patch_discriminator_kernels[patch_size]
  55. if base_ch is None:
  56. base_ch = suggested_base_ch
  57. prev_ch = in_ch
  58. self.convs = []
  59. for i, (kernel_size, strides) in enumerate(kernels_strides):
  60. cur_ch = base_ch * min( (2**i), 8 )
  61. self.convs.append ( nn.Conv2D( prev_ch, cur_ch, kernel_size=kernel_size, strides=strides, padding='SAME', kernel_initializer=conv_kernel_initializer) )
  62. prev_ch = cur_ch
  63. self.out_conv = nn.Conv2D( prev_ch, 1, kernel_size=1, padding='VALID', kernel_initializer=conv_kernel_initializer)
  64. def forward(self, x):
  65. for conv in self.convs:
  66. x = tf.nn.leaky_relu( conv(x), 0.1 )
  67. return self.out_conv(x)
  68. nn.PatchDiscriminator = PatchDiscriminator
  69. class UNetPatchDiscriminator(nn.ModelBase):
  70. """
  71. Inspired by https://arxiv.org/abs/2002.12655 "A U-Net Based Discriminator for Generative Adversarial Networks"
  72. """
  73. def calc_receptive_field_size(self, layers):
  74. """
  75. result the same as https://fomoro.com/research/article/receptive-field-calculatorindex.html
  76. """
  77. rf = 0
  78. ts = 1
  79. for i, (k, s) in enumerate(layers):
  80. if i == 0:
  81. rf = k
  82. else:
  83. rf += (k-1)*ts
  84. ts *= s
  85. return rf
  86. def find_archi(self, target_patch_size, max_layers=9):
  87. """
  88. Find the best configuration of layers using only 3x3 convs for target patch size
  89. """
  90. s = {}
  91. for layers_count in range(1,max_layers+1):
  92. val = 1 << (layers_count-1)
  93. while True:
  94. val -= 1
  95. layers = []
  96. sum_st = 0
  97. layers.append ( [3, 2])
  98. sum_st += 2
  99. for i in range(layers_count-1):
  100. st = 1 + (1 if val & (1 << i) !=0 else 0 )
  101. layers.append ( [3, st ])
  102. sum_st += st
  103. rf = self.calc_receptive_field_size(layers)
  104. s_rf = s.get(rf, None)
  105. if s_rf is None:
  106. s[rf] = (layers_count, sum_st, layers)
  107. else:
  108. if layers_count < s_rf[0] or \
  109. ( layers_count == s_rf[0] and sum_st > s_rf[1] ):
  110. s[rf] = (layers_count, sum_st, layers)
  111. if val == 0:
  112. break
  113. x = sorted(list(s.keys()))
  114. q=x[np.abs(np.array(x)-target_patch_size).argmin()]
  115. return s[q][2]
  116. def on_build(self, patch_size, in_ch, base_ch = 16, use_fp16 = False):
  117. self.use_fp16 = use_fp16
  118. conv_dtype = tf.float16 if use_fp16 else tf.float32
  119. class ResidualBlock(nn.ModelBase):
  120. def on_build(self, ch, kernel_size=3 ):
  121. self.conv1 = nn.Conv2D( ch, ch, kernel_size=kernel_size, padding='SAME', dtype=conv_dtype)
  122. self.conv2 = nn.Conv2D( ch, ch, kernel_size=kernel_size, padding='SAME', dtype=conv_dtype)
  123. def forward(self, inp):
  124. x = self.conv1(inp)
  125. x = tf.nn.leaky_relu(x, 0.2)
  126. x = self.conv2(x)
  127. x = tf.nn.leaky_relu(inp + x, 0.2)
  128. return x
  129. prev_ch = in_ch
  130. self.convs = []
  131. self.upconvs = []
  132. layers = self.find_archi(patch_size)
  133. level_chs = { i-1:v for i,v in enumerate([ min( base_ch * (2**i), 512 ) for i in range(len(layers)+1)]) }
  134. self.in_conv = nn.Conv2D( in_ch, level_chs[-1], kernel_size=1, padding='VALID', dtype=conv_dtype)
  135. for i, (kernel_size, strides) in enumerate(layers):
  136. self.convs.append ( nn.Conv2D( level_chs[i-1], level_chs[i], kernel_size=kernel_size, strides=strides, padding='SAME', dtype=conv_dtype) )
  137. self.upconvs.insert (0, nn.Conv2DTranspose( level_chs[i]*(2 if i != len(layers)-1 else 1), level_chs[i-1], kernel_size=kernel_size, strides=strides, padding='SAME', dtype=conv_dtype) )
  138. self.out_conv = nn.Conv2D( level_chs[-1]*2, 1, kernel_size=1, padding='VALID', dtype=conv_dtype)
  139. self.center_out = nn.Conv2D( level_chs[len(layers)-1], 1, kernel_size=1, padding='VALID', dtype=conv_dtype)
  140. self.center_conv = nn.Conv2D( level_chs[len(layers)-1], level_chs[len(layers)-1], kernel_size=1, padding='VALID', dtype=conv_dtype)
  141. def forward(self, x):
  142. if self.use_fp16:
  143. x = tf.cast(x, tf.float16)
  144. x = tf.nn.leaky_relu( self.in_conv(x), 0.2 )
  145. encs = []
  146. for conv in self.convs:
  147. encs.insert(0, x)
  148. x = tf.nn.leaky_relu( conv(x), 0.2 )
  149. center_out, x = self.center_out(x), tf.nn.leaky_relu( self.center_conv(x), 0.2 )
  150. for i, (upconv, enc) in enumerate(zip(self.upconvs, encs)):
  151. x = tf.nn.leaky_relu( upconv(x), 0.2 )
  152. x = tf.concat( [enc, x], axis=nn.conv2d_ch_axis)
  153. x = self.out_conv(x)
  154. if self.use_fp16:
  155. center_out = tf.cast(center_out, tf.float32)
  156. x = tf.cast(x, tf.float32)
  157. return center_out, x
  158. nn.UNetPatchDiscriminator = UNetPatchDiscriminator
Tip!

Press p or to see the previous file or, n or to see the next file

Comments

Loading...