1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
|
- import gc
- import math
- import os
- import re
- import warnings
- from fractions import Fraction
- from typing import Any, Dict, List, Optional, Tuple, Union
- import numpy as np
- import torch
- from ..utils import _log_api_usage_once
- from . import _video_opt
- from ._video_deprecation_warning import _raise_video_deprecation_warning
- try:
- import av
- av.logging.set_level(av.logging.ERROR)
- if not hasattr(av.video.frame.VideoFrame, "pict_type"):
- av = ImportError(
- """\
- Your version of PyAV is too old for the necessary video operations in torchvision.
- If you are on Python 3.5, you will have to build from source (the conda-forge
- packages are not up-to-date). See
- https://github.com/mikeboers/PyAV#installation for instructions on how to
- install PyAV on your system.
- """
- )
- try:
- FFmpegError = av.FFmpegError # from av 14 https://github.com/PyAV-Org/PyAV/blob/main/CHANGELOG.rst
- except AttributeError:
- FFmpegError = av.AVError
- except ImportError:
- av = ImportError(
- """\
- PyAV is not installed, and is necessary for the video operations in torchvision.
- See https://github.com/mikeboers/PyAV#installation for instructions on how to
- install PyAV on your system.
- """
- )
- def _check_av_available() -> None:
- if isinstance(av, Exception):
- raise av
- def _av_available() -> bool:
- return not isinstance(av, Exception)
- # PyAV has some reference cycles
- _CALLED_TIMES = 0
- _GC_COLLECTION_INTERVAL = 10
- def write_video(
- filename: str,
- video_array: torch.Tensor,
- fps: float,
- video_codec: str = "libx264",
- options: Optional[Dict[str, Any]] = None,
- audio_array: Optional[torch.Tensor] = None,
- audio_fps: Optional[float] = None,
- audio_codec: Optional[str] = None,
- audio_options: Optional[Dict[str, Any]] = None,
- ) -> None:
- """
- [DEPRECATED] Writes a 4d tensor in [T, H, W, C] format in a video file.
- .. warning::
- DEPRECATED: All the video decoding and encoding capabilities of torchvision
- are deprecated from version 0.22 and will be removed in version 0.24. We
- recommend that you migrate to
- `TorchCodec <https://github.com/pytorch/torchcodec>`__, where we'll
- consolidate the future decoding/encoding capabilities of PyTorch
- This function relies on PyAV (therefore, ultimately FFmpeg) to encode
- videos, you can get more fine-grained control by referring to the other
- options at your disposal within `the FFMpeg wiki
- <http://trac.ffmpeg.org/wiki#Encoding>`_.
- Args:
- filename (str): path where the video will be saved
- video_array (Tensor[T, H, W, C]): tensor containing the individual frames,
- as a uint8 tensor in [T, H, W, C] format
- fps (Number): video frames per second
- video_codec (str): the name of the video codec, i.e. "libx264", "h264", etc.
- options (Dict): dictionary containing options to be passed into the PyAV video stream.
- The list of options is codec-dependent and can all
- be found from `the FFMpeg wiki <http://trac.ffmpeg.org/wiki#Encoding>`_.
- audio_array (Tensor[C, N]): tensor containing the audio, where C is the number of channels
- and N is the number of samples
- audio_fps (Number): audio sample rate, typically 44100 or 48000
- audio_codec (str): the name of the audio codec, i.e. "mp3", "aac", etc.
- audio_options (Dict): dictionary containing options to be passed into the PyAV audio stream.
- The list of options is codec-dependent and can all
- be found from `the FFMpeg wiki <http://trac.ffmpeg.org/wiki#Encoding>`_.
- Examples::
- >>> # Creating libx264 video with CRF 17, for visually lossless footage:
- >>>
- >>> from torchvision.io import write_video
- >>> # 1000 frames of 100x100, 3-channel image.
- >>> vid = torch.randn(1000, 100, 100, 3, dtype = torch.uint8)
- >>> write_video("video.mp4", options = {"crf": "17"})
- """
- _raise_video_deprecation_warning()
- if not torch.jit.is_scripting() and not torch.jit.is_tracing():
- _log_api_usage_once(write_video)
- _check_av_available()
- video_array = torch.as_tensor(video_array, dtype=torch.uint8).numpy(force=True)
- # PyAV does not support floating point numbers with decimal point
- # and will throw OverflowException in case this is not the case
- if isinstance(fps, float):
- fps = int(np.round(fps))
- with av.open(filename, mode="w") as container:
- stream = container.add_stream(video_codec, rate=fps)
- stream.width = video_array.shape[2]
- stream.height = video_array.shape[1]
- stream.pix_fmt = "yuv420p" if video_codec != "libx264rgb" else "rgb24"
- stream.options = options or {}
- if audio_array is not None:
- audio_format_dtypes = {
- "dbl": "<f8",
- "dblp": "<f8",
- "flt": "<f4",
- "fltp": "<f4",
- "s16": "<i2",
- "s16p": "<i2",
- "s32": "<i4",
- "s32p": "<i4",
- "u8": "u1",
- "u8p": "u1",
- }
- a_stream = container.add_stream(audio_codec, rate=audio_fps)
- a_stream.options = audio_options or {}
- num_channels = audio_array.shape[0]
- audio_layout = "stereo" if num_channels > 1 else "mono"
- audio_sample_fmt = container.streams.audio[0].format.name
- format_dtype = np.dtype(audio_format_dtypes[audio_sample_fmt])
- audio_array = torch.as_tensor(audio_array).numpy(force=True).astype(format_dtype)
- frame = av.AudioFrame.from_ndarray(audio_array, format=audio_sample_fmt, layout=audio_layout)
- frame.sample_rate = audio_fps
- for packet in a_stream.encode(frame):
- container.mux(packet)
- for packet in a_stream.encode():
- container.mux(packet)
- for img in video_array:
- frame = av.VideoFrame.from_ndarray(img, format="rgb24")
- try:
- frame.pict_type = "NONE"
- except TypeError:
- from av.video.frame import PictureType # noqa
- frame.pict_type = PictureType.NONE
- for packet in stream.encode(frame):
- container.mux(packet)
- # Flush stream
- for packet in stream.encode():
- container.mux(packet)
- def _read_from_stream(
- container: "av.container.Container",
- start_offset: float,
- end_offset: float,
- pts_unit: str,
- stream: "av.stream.Stream",
- stream_name: Dict[str, Optional[Union[int, Tuple[int, ...], List[int]]]],
- ) -> List["av.frame.Frame"]:
- global _CALLED_TIMES, _GC_COLLECTION_INTERVAL
- _CALLED_TIMES += 1
- if _CALLED_TIMES % _GC_COLLECTION_INTERVAL == _GC_COLLECTION_INTERVAL - 1:
- gc.collect()
- if pts_unit == "sec":
- # TODO: we should change all of this from ground up to simply take
- # sec and convert to MS in C++
- start_offset = int(math.floor(start_offset * (1 / stream.time_base)))
- if end_offset != float("inf"):
- end_offset = int(math.ceil(end_offset * (1 / stream.time_base)))
- else:
- warnings.warn("The pts_unit 'pts' gives wrong results. Please use pts_unit 'sec'.")
- frames = {}
- should_buffer = True
- max_buffer_size = 5
- if stream.type == "video":
- # DivX-style packed B-frames can have out-of-order pts (2 frames in a single pkt)
- # so need to buffer some extra frames to sort everything
- # properly
- extradata = stream.codec_context.extradata
- # overly complicated way of finding if `divx_packed` is set, following
- # https://github.com/FFmpeg/FFmpeg/commit/d5a21172283572af587b3d939eba0091484d3263
- if extradata and b"DivX" in extradata:
- # can't use regex directly because of some weird characters sometimes...
- pos = extradata.find(b"DivX")
- d = extradata[pos:]
- o = re.search(rb"DivX(\d+)Build(\d+)(\w)", d)
- if o is None:
- o = re.search(rb"DivX(\d+)b(\d+)(\w)", d)
- if o is not None:
- should_buffer = o.group(3) == b"p"
- seek_offset = start_offset
- # some files don't seek to the right location, so better be safe here
- seek_offset = max(seek_offset - 1, 0)
- if should_buffer:
- # FIXME this is kind of a hack, but we will jump to the previous keyframe
- # so this will be safe
- seek_offset = max(seek_offset - max_buffer_size, 0)
- try:
- # TODO check if stream needs to always be the video stream here or not
- container.seek(seek_offset, any_frame=False, backward=True, stream=stream)
- except FFmpegError:
- # TODO add some warnings in this case
- # print("Corrupted file?", container.name)
- return []
- buffer_count = 0
- try:
- for _idx, frame in enumerate(container.decode(**stream_name)):
- frames[frame.pts] = frame
- if frame.pts >= end_offset:
- if should_buffer and buffer_count < max_buffer_size:
- buffer_count += 1
- continue
- break
- except FFmpegError:
- # TODO add a warning
- pass
- # ensure that the results are sorted wrt the pts
- result = [frames[i] for i in sorted(frames) if start_offset <= frames[i].pts <= end_offset]
- if len(frames) > 0 and start_offset > 0 and start_offset not in frames:
- # if there is no frame that exactly matches the pts of start_offset
- # add the last frame smaller than start_offset, to guarantee that
- # we will have all the necessary data. This is most useful for audio
- preceding_frames = [i for i in frames if i < start_offset]
- if len(preceding_frames) > 0:
- first_frame_pts = max(preceding_frames)
- result.insert(0, frames[first_frame_pts])
- return result
- def _align_audio_frames(
- aframes: torch.Tensor, audio_frames: List["av.frame.Frame"], ref_start: int, ref_end: float
- ) -> torch.Tensor:
- start, end = audio_frames[0].pts, audio_frames[-1].pts
- total_aframes = aframes.shape[1]
- step_per_aframe = (end - start + 1) / total_aframes
- s_idx = 0
- e_idx = total_aframes
- if start < ref_start:
- s_idx = int((ref_start - start) / step_per_aframe)
- if end > ref_end:
- e_idx = int((ref_end - end) / step_per_aframe)
- return aframes[:, s_idx:e_idx]
- def read_video(
- filename: str,
- start_pts: Union[float, Fraction] = 0,
- end_pts: Optional[Union[float, Fraction]] = None,
- pts_unit: str = "pts",
- output_format: str = "THWC",
- ) -> Tuple[torch.Tensor, torch.Tensor, Dict[str, Any]]:
- """[DEPRECATED] Reads a video from a file, returning both the video frames and the audio frames
- .. warning::
- DEPRECATED: All the video decoding and encoding capabilities of torchvision
- are deprecated from version 0.22 and will be removed in version 0.24. We
- recommend that you migrate to
- `TorchCodec <https://github.com/pytorch/torchcodec>`__, where we'll
- consolidate the future decoding/encoding capabilities of PyTorch
- Args:
- filename (str): path to the video file. If using the pyav backend, this can be whatever ``av.open`` accepts.
- start_pts (int if pts_unit = 'pts', float / Fraction if pts_unit = 'sec', optional):
- The start presentation time of the video
- end_pts (int if pts_unit = 'pts', float / Fraction if pts_unit = 'sec', optional):
- The end presentation time
- pts_unit (str, optional): unit in which start_pts and end_pts values will be interpreted,
- either 'pts' or 'sec'. Defaults to 'pts'.
- output_format (str, optional): The format of the output video tensors. Can be either "THWC" (default) or "TCHW".
- Returns:
- vframes (Tensor[T, H, W, C] or Tensor[T, C, H, W]): the `T` video frames
- aframes (Tensor[K, L]): the audio frames, where `K` is the number of channels and `L` is the number of points
- info (Dict): metadata for the video and audio. Can contain the fields video_fps (float) and audio_fps (int)
- """
- _raise_video_deprecation_warning()
- if not torch.jit.is_scripting() and not torch.jit.is_tracing():
- _log_api_usage_once(read_video)
- output_format = output_format.upper()
- if output_format not in ("THWC", "TCHW"):
- raise ValueError(f"output_format should be either 'THWC' or 'TCHW', got {output_format}.")
- from torchvision import get_video_backend
- if get_video_backend() != "pyav":
- if not os.path.exists(filename):
- raise RuntimeError(f"File not found: {filename}")
- vframes, aframes, info = _video_opt._read_video(filename, start_pts, end_pts, pts_unit)
- else:
- _check_av_available()
- if end_pts is None:
- end_pts = float("inf")
- if end_pts < start_pts:
- raise ValueError(
- f"end_pts should be larger than start_pts, got start_pts={start_pts} and end_pts={end_pts}"
- )
- info = {}
- video_frames = []
- audio_frames = []
- audio_timebase = _video_opt.default_timebase
- try:
- with av.open(filename, metadata_errors="ignore") as container:
- if container.streams.audio:
- audio_timebase = container.streams.audio[0].time_base
- if container.streams.video:
- video_frames = _read_from_stream(
- container,
- start_pts,
- end_pts,
- pts_unit,
- container.streams.video[0],
- {"video": 0},
- )
- video_fps = container.streams.video[0].average_rate
- # guard against potentially corrupted files
- if video_fps is not None:
- info["video_fps"] = float(video_fps)
- if container.streams.audio:
- audio_frames = _read_from_stream(
- container,
- start_pts,
- end_pts,
- pts_unit,
- container.streams.audio[0],
- {"audio": 0},
- )
- info["audio_fps"] = container.streams.audio[0].rate
- except FFmpegError:
- # TODO raise a warning?
- pass
- vframes_list = [frame.to_rgb().to_ndarray() for frame in video_frames]
- aframes_list = [frame.to_ndarray() for frame in audio_frames]
- if vframes_list:
- vframes = torch.as_tensor(np.stack(vframes_list))
- else:
- vframes = torch.empty((0, 1, 1, 3), dtype=torch.uint8)
- if aframes_list:
- aframes = np.concatenate(aframes_list, 1)
- aframes = torch.as_tensor(aframes)
- if pts_unit == "sec":
- start_pts = int(math.floor(start_pts * (1 / audio_timebase)))
- if end_pts != float("inf"):
- end_pts = int(math.ceil(end_pts * (1 / audio_timebase)))
- aframes = _align_audio_frames(aframes, audio_frames, start_pts, end_pts)
- else:
- aframes = torch.empty((1, 0), dtype=torch.float32)
- if output_format == "TCHW":
- # [T,H,W,C] --> [T,C,H,W]
- vframes = vframes.permute(0, 3, 1, 2)
- return vframes, aframes, info
- def _can_read_timestamps_from_packets(container: "av.container.Container") -> bool:
- extradata = container.streams[0].codec_context.extradata
- if extradata is None:
- return False
- if b"Lavc" in extradata:
- return True
- return False
- def _decode_video_timestamps(container: "av.container.Container") -> List[int]:
- if _can_read_timestamps_from_packets(container):
- # fast path
- return [x.pts for x in container.demux(video=0) if x.pts is not None]
- else:
- return [x.pts for x in container.decode(video=0) if x.pts is not None]
- def read_video_timestamps(filename: str, pts_unit: str = "pts") -> Tuple[List[int], Optional[float]]:
- """[DEPREACTED] List the video frames timestamps.
- .. warning::
- DEPRECATED: All the video decoding and encoding capabilities of torchvision
- are deprecated from version 0.22 and will be removed in version 0.24. We
- recommend that you migrate to
- `TorchCodec <https://github.com/pytorch/torchcodec>`__, where we'll
- consolidate the future decoding/encoding capabilities of PyTorch
- Note that the function decodes the whole video frame-by-frame.
- Args:
- filename (str): path to the video file
- pts_unit (str, optional): unit in which timestamp values will be returned
- either 'pts' or 'sec'. Defaults to 'pts'.
- Returns:
- pts (List[int] if pts_unit = 'pts', List[Fraction] if pts_unit = 'sec'):
- presentation timestamps for each one of the frames in the video.
- video_fps (float, optional): the frame rate for the video
- """
- _raise_video_deprecation_warning()
- if not torch.jit.is_scripting() and not torch.jit.is_tracing():
- _log_api_usage_once(read_video_timestamps)
- from torchvision import get_video_backend
- if get_video_backend() != "pyav":
- return _video_opt._read_video_timestamps(filename, pts_unit)
- _check_av_available()
- video_fps = None
- pts = []
- try:
- with av.open(filename, metadata_errors="ignore") as container:
- if container.streams.video:
- video_stream = container.streams.video[0]
- video_time_base = video_stream.time_base
- try:
- pts = _decode_video_timestamps(container)
- except FFmpegError:
- warnings.warn(f"Failed decoding frames for file {filename}")
- video_fps = float(video_stream.average_rate)
- except FFmpegError as e:
- msg = f"Failed to open container for {filename}; Caught error: {e}"
- warnings.warn(msg, RuntimeWarning)
- pts.sort()
- if pts_unit == "sec":
- pts = [x * video_time_base for x in pts]
- return pts, video_fps
|