1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
|
- import multiprocessing
- import shutil
- from DFLIMG import *
- from interact import interact as io
- from joblib import Subprocessor
- from nnlib import nnlib
- from utils import Path_utils
- from utils.cv2_utils import *
- class FacesetEnhancerSubprocessor(Subprocessor):
-
- #override
- def __init__(self, image_paths, output_dirpath, multi_gpu=False, cpu_only=False):
- self.image_paths = image_paths
- self.output_dirpath = output_dirpath
- self.result = []
- self.devices = FacesetEnhancerSubprocessor.get_devices_for_config(multi_gpu, cpu_only)
-
- super().__init__('FacesetEnhancer', FacesetEnhancerSubprocessor.Cli, 600)
- #override
- def on_clients_initialized(self):
- io.progress_bar (None, len (self.image_paths))
-
- #override
- def on_clients_finalized(self):
- io.progress_bar_close()
-
- #override
- def process_info_generator(self):
- base_dict = {'output_dirpath':self.output_dirpath}
- for (device_idx, device_type, device_name, device_total_vram_gb) in self.devices:
- client_dict = base_dict.copy()
- client_dict['device_idx'] = device_idx
- client_dict['device_name'] = device_name
- client_dict['device_type'] = device_type
- yield client_dict['device_name'], {}, client_dict
- #override
- def get_data(self, host_dict):
- if len (self.image_paths) > 0:
- return self.image_paths.pop(0)
-
- #override
- def on_data_return (self, host_dict, data):
- self.image_paths.insert(0, data)
-
- #override
- def on_result (self, host_dict, data, result):
- io.progress_bar_inc(1)
- if result[0] == 1:
- self.result +=[ (result[1], result[2]) ]
-
- #override
- def get_result(self):
- return self.result
-
- @staticmethod
- def get_devices_for_config (multi_gpu, cpu_only):
- backend = nnlib.device.backend
- if 'cpu' in backend:
- cpu_only = True
- if not cpu_only and backend == "plaidML":
- cpu_only = True
- if not cpu_only:
- devices = []
- if multi_gpu:
- devices = nnlib.device.getValidDevicesWithAtLeastTotalMemoryGB(2)
- if len(devices) == 0:
- idx = nnlib.device.getBestValidDeviceIdx()
- if idx != -1:
- devices = [idx]
- if len(devices) == 0:
- cpu_only = True
- result = []
- for idx in devices:
- dev_name = nnlib.device.getDeviceName(idx)
- dev_vram = nnlib.device.getDeviceVRAMTotalGb(idx)
- result += [ (idx, 'GPU', dev_name, dev_vram) ]
-
- return result
- if cpu_only:
- return [ (i, 'CPU', 'CPU%d' % (i), 0 ) for i in range( min(8, multiprocessing.cpu_count() // 2) ) ]
-
- class Cli(Subprocessor.Cli):
- #override
- def on_initialize(self, client_dict):
- device_idx = client_dict['device_idx']
- cpu_only = client_dict['device_type'] == 'CPU'
- self.output_dirpath = client_dict['output_dirpath']
-
- device_config = nnlib.DeviceConfig ( cpu_only=cpu_only, force_gpu_idx=device_idx, allow_growth=True)
- nnlib.import_all (device_config)
-
- device_vram = device_config.gpu_vram_gb[0]
- intro_str = 'Running on %s.' % (client_dict['device_name'])
- if not cpu_only and device_vram <= 2:
- intro_str += " Recommended to close all programs using this device."
- self.log_info (intro_str)
- from facelib import FaceEnhancer
- self.fe = FaceEnhancer()
- #override
- def process_data(self, filepath):
- try:
- dflimg = DFLIMG.load (filepath)
- if dflimg is None:
- self.log_err ("%s is not a dfl image file" % (filepath.name) )
- else:
- img = cv2_imread(filepath).astype(np.float32) / 255.0
-
- img = self.fe.enhance(img)
-
- img = np.clip (img*255, 0, 255).astype(np.uint8)
-
- output_filepath = self.output_dirpath / filepath.name
-
- cv2_imwrite ( str(output_filepath), img, [int(cv2.IMWRITE_JPEG_QUALITY), 100] )
- dflimg.embed_and_set ( str(output_filepath) )
- return (1, filepath, output_filepath)
- except:
- self.log_err (f"Exception occured while processing file {filepath}. Error: {traceback.format_exc()}")
-
- return (0, filepath, None)
-
- def process_folder ( dirpath, multi_gpu=False, cpu_only=False ):
- output_dirpath = dirpath.parent / (dirpath.name + '_enhanced')
- output_dirpath.mkdir (exist_ok=True, parents=True)
-
- dirpath_parts = '/'.join( dirpath.parts[-2:])
- output_dirpath_parts = '/'.join( output_dirpath.parts[-2:] )
- io.log_info (f"Enhancing faceset in {dirpath_parts}")
- io.log_info ( f"Processing to {output_dirpath_parts}")
- output_images_paths = Path_utils.get_image_paths(output_dirpath)
- if len(output_images_paths) > 0:
- for filename in output_images_paths:
- Path(filename).unlink()
-
- image_paths = [Path(x) for x in Path_utils.get_image_paths( dirpath )]
- result = FacesetEnhancerSubprocessor ( image_paths, output_dirpath, multi_gpu=multi_gpu, cpu_only=cpu_only).run()
- is_merge = io.input_bool (f"\r\nMerge {output_dirpath_parts} to {dirpath_parts} ? (y/n skip:y) : ", True)
- if is_merge:
- io.log_info (f"Copying processed files to {dirpath_parts}")
-
- for (filepath, output_filepath) in result:
- try:
- shutil.copy (output_filepath, filepath)
- except:
- pass
-
- io.log_info (f"Removing {output_dirpath_parts}")
- shutil.rmtree(output_dirpath)
|