Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

params.py 958 B

You have to be logged in to leave a comment. Sign In
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
  1. #Ridge Param Grid
  2. ridge_param_grid = {
  3. 'alpha': [0.1, 1.0, 10.0],
  4. 'fit_intercept': [True, False],
  5. }
  6. elasticnet_param_grid = {
  7. 'alpha': [0.1, 1.0, 10.0],
  8. 'l1_ratio': [0.2, 0.5, 0.8],
  9. 'fit_intercept': [True, False],
  10. }
  11. xgb_param_grid = {
  12. 'n_estimators': [100, 200, 300], # Number of boosting rounds
  13. 'learning_rate': [0.01, 0.1, 0.2], # Step size shrinkage to prevent overfitting
  14. 'max_depth': [3, 4, 5], # Maximum depth of each tree
  15. 'min_child_weight': [1, 2, 3], # Minimum sum of instance weight needed in a child
  16. 'subsample': [0.8, 0.9, 1.0], # Fraction of samples used for training
  17. 'colsample_bytree': [0.8, 0.9, 1.0], # Fraction of features used for training
  18. 'gamma': [0, 0.1, 0.2], # Minimum loss reduction required to make a further partition on a leaf node
  19. 'reg_alpha': [0, 0.1, 1.0], # L1 regularization term on weights
  20. 'reg_lambda': [0, 0.1, 1.0], # L2 regularization term on weights
  21. }
Tip!

Press p or to see the previous file or, n or to see the next file

Comments

Loading...