Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

nc_experiments.py 13 KB

You have to be logged in to leave a comment. Sign In
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
  1. """
  2. # Created by ashish1610dhiman at 28/12/20
  3. Contact at ashish1610dhiman@gmail.com
  4. """
  5. import sys
  6. from pathlib import Path
  7. script_path = Path(__file__)
  8. bas_dir = script_path.parent.parent
  9. sys.path.append('{}/src'.format(bas_dir))
  10. import os
  11. import csv
  12. import yaml
  13. import tqdm
  14. import math
  15. import pickle
  16. import numpy as np
  17. import pandas as pd
  18. import itertools
  19. import operator
  20. from pathlib import Path
  21. import argparse
  22. from operator import concat, itemgetter
  23. import matplotlib.pyplot as plt
  24. import dask
  25. from joblib import Parallel, delayed, parallel_backend
  26. from dask.distributed import Client
  27. from collections import defaultdict
  28. from functools import reduce
  29. from operator import concat, itemgetter
  30. import ast
  31. import time
  32. from pickle_wrapper import unpickle, pickle_it
  33. from mcmc_norm_learning.algorithm_1_v4 import to_tuple
  34. from mcmc_norm_learning.algorithm_1_v4 import create_data
  35. from mcmc_norm_learning.rules_4 import get_prob, get_log_prob
  36. from mcmc_norm_learning.environment import position, plot_env
  37. from mcmc_norm_learning.robot_task_new import task, robot, plot_task
  38. from mcmc_norm_learning.algorithm_1_v4 import algorithm_1, over_dispersed_starting_points
  39. from mcmc_norm_learning.mcmc_convergence import prepare_sequences, calculate_R
  40. from mcmc_norm_learning.rules_4 import q_dict, rule_dict, get_log_prob
  41. from algorithm_2_utilities import Likelihood
  42. from mcmc_norm_learning.mcmc_performance import performance
  43. from collections import Counter
  44. """ Step 0: Process setup """
  45. s=time.time()
  46. parser = argparse.ArgumentParser()
  47. parser.add_argument('-exp', metavar='exp_no', type=str, nargs='+', help='Experiment directory', default="exp0")
  48. parser.add_argument('-w_nc', metavar='w_nc', type=float, nargs='+', help='w non-compliance', default=None)
  49. parser.add_argument('-n_threads', metavar='n_threads', type=float, nargs='+', help='n_threads used', default=-1)
  50. parser.add_argument('-seed', metavar='random_seed', type=int, nargs='+', help='random_seed used', default=None)
  51. exp_no = parser.parse_args().exp[0]
  52. w_nc = float(parser.parse_args().w_nc[0])
  53. n_threads=int(parser.parse_args().n_threads[0])
  54. seed = parser.parse_args().seed
  55. if seed != None:
  56. seed = int(seed[0])
  57. output_dir = f"{bas_dir}/data_nc/{exp_no}/"
  58. assert not os.path.exists(output_dir), "Output dir already present"
  59. os.makedirs(output_dir)
  60. with open(f"{bas_dir}/params_nc.yaml", 'r') as fd:
  61. params = yaml.safe_load(fd)
  62. print ("########## * -------- * ########## || Time for step 0 {:.2f}s ||\
  63. ########## * -------- * ##########".format(time.time()-s))
  64. """ Step 1: Default Environment and params"""
  65. #Set Dask Env
  66. client = Client(threads_per_worker=1,processes=False)
  67. ##Get default env
  68. env = unpickle(f'{bas_dir}/data/env.pickle')
  69. ##Get default task
  70. true_norm_exp = params['true_norm']['exp']
  71. num_observations = params['num_observations']
  72. obs_data_set = params['obs_data_set']
  73. if w_nc == None:
  74. w_nc = params["w_nc"]
  75. n = params['n']
  76. m = params['m']
  77. rf = params['rf']
  78. rhat_step_size = params['rhat_step_size']
  79. top_n = params["top_norms_n"]
  80. if not isinstance(seed,int): #If Not supplied as CLI arg
  81. seed = params["random_seed"]
  82. seed=None
  83. colour_specific = params['colour_specific']
  84. shape_specific = params['shape_specific']
  85. target_area_parts = params['target_area'].replace(' ', '').split(';')
  86. target_area_part0 = position(*map(float, target_area_parts[0].split(',')))
  87. target_area_part1 = position(*map(float, target_area_parts[1].split(',')))
  88. target_area = (target_area_part0, target_area_part1)
  89. print(target_area_part0.coordinates())
  90. print(target_area_part1.coordinates())
  91. the_task = task(colour_specific, shape_specific, target_area)
  92. fig, axs = plt.subplots(1, 2, figsize=(11, 4), dpi=100);
  93. plot_task(env, axs[0], "Initial Task State", the_task, True)
  94. axs[1].text(0, 0.5, "\n".join([str(x) for x in true_norm_exp]), wrap=True)
  95. axs[1].axis("off")
  96. axs[1].title.set_text("True Norm")
  97. plt.savefig(f"{output_dir}/env_task_setup.jpg")
  98. plt.close()
  99. print ("########## * -------- * ########## || Time for step 1 {:.2f}s ||\
  100. ########## * -------- * ##########".format(time.time()-s))
  101. """ Step 2: Gen Observations """
  102. print (f"log::: seed={seed}")
  103. obs = nc_obs = create_data(true_norm_exp, env, name=None, task=the_task, random_task=False,
  104. num_actionable=np.nan, num_repeat=num_observations, w_nc=w_nc,seed=seed, verbose=False)
  105. true_norm_prior = get_prob("NORMS", true_norm_exp)
  106. true_norm_log_prior = get_log_prob("NORMS", true_norm_exp)
  107. print(f"For True Norm, prior={true_norm_prior}, log_prior={true_norm_log_prior}")
  108. pickle_it(obs, f'{output_dir}/obs.pickle')
  109. print ("########## * -------- * ########## || Time for step 2 {:.2f}s ||\
  110. ########## * -------- * ##########".format(time.time()-s))
  111. """ Step 3: Gen MCMC chains """
  112. num_chains = math.ceil(m / 2)
  113. starts, info = over_dispersed_starting_points(num_chains, obs, env, \
  114. the_task, time_threshold=math.inf, w_normative=(1 - w_nc))
  115. with open(f'{output_dir}/starts_info_nc.txt', 'w') as chain_info:
  116. chain_info.write(info)
  117. @dask.delayed
  118. def delayed_alg1(obs, env, the_task, q_dict, rule_dict, start, rf, max_iters, w_nc):
  119. exp_seq, log_likelihoods = algorithm_1(obs, env, the_task, q_dict, rule_dict,
  120. "dummy value", start=start, relevance_factor=rf, \
  121. max_iterations=max_iters, w_normative=1 - w_nc, verbose=False)
  122. log_posteriors = [None] * len(exp_seq)
  123. for i in range(len(exp_seq)):
  124. exp = exp_seq[i]
  125. ll = log_likelihoods[i]
  126. log_prior = get_log_prob("NORMS", exp) # Note: this imports the rules dict from rules_4.py
  127. log_posteriors[i] = log_prior + ll
  128. return {'chain': exp_seq, 'log_posteriors': log_posteriors}
  129. def delayed_alg1_joblib(start_i):
  130. alg1_result = delayed_alg1(obs=obs, env=env, the_task=the_task, q_dict=q_dict, \
  131. rule_dict=rule_dict, start=start_i, rf=rf, \
  132. max_iters=4 * n, w_nc=w_nc).compute()
  133. return (alg1_result)
  134. chains_and_log_posteriors = []
  135. client.shutdown()
  136. #with parallel_backend('dask'):
  137. chains_and_log_posteriors = Parallel(verbose=4, n_jobs=n_threads, prefer="processes"\
  138. )(delayed(delayed_alg1_joblib)(starts[run])\
  139. for run in tqdm.tqdm(range(num_chains),\
  140. desc="Loop for Individual Chains"))
  141. pickle_it(chains_and_log_posteriors, f'{output_dir}/chains_and_log_posteriors.pickle')
  142. print ("########## * -------- * ########## || Time for step 3 {:.2f}s ||\
  143. ########## * -------- * ##########".format(time.time()-s))
  144. """ Step 4: Pass to analyse chains """
  145. with open(f'{output_dir}/chain_posteriors_nc.csv', 'w', newline='') as csvfile, \
  146. open(f'{output_dir}/chain_info.txt', 'w') as chain_info:
  147. chain_info.write(f'Number of chains: {len(chains_and_log_posteriors)}\n')
  148. chain_info.write(f'Length of each chain: {len(chains_and_log_posteriors[0]["chain"])}\n')
  149. csv_writer = csv.writer(csvfile)
  150. csv_writer.writerow(('chain_number', 'chain_pos', 'expression', 'log_posterior'))
  151. exps_in_chains = [None] * len(chains_and_log_posteriors)
  152. for i, chain_data in enumerate(chains_and_log_posteriors): # Consider skipping first few entries
  153. chain = chain_data['chain']
  154. log_posteriors = chain_data['log_posteriors']
  155. exp_lp_pairs = list(zip(chain, log_posteriors))
  156. exps_in_chains[i] = set(map(to_tuple, chain))
  157. # print(sorted(log_posteriors, reverse=True))
  158. lps_to_exps = defaultdict(set)
  159. for exp, lp in exp_lp_pairs:
  160. lps_to_exps[lp].add(to_tuple(exp))
  161. num_exps_in_chain = len(exps_in_chains[i])
  162. print(lps_to_exps.keys())
  163. print('\n')
  164. chain_info.write(f'Num. expressions in chain {i}: {num_exps_in_chain}\n')
  165. decreasing_lps = sorted(lps_to_exps.keys(), reverse=True)
  166. chain_info.write("Expressions by decreasing log posterior\n")
  167. for lp in decreasing_lps:
  168. chain_info.write(f'lp = {lp} [{len(lps_to_exps[lp])} exps]:\n')
  169. for exp in lps_to_exps[lp]:
  170. chain_info.write(f' {exp}\n')
  171. chain_info.write('\n')
  172. chain_info.write('\n')
  173. changed_exp_indices = [i for i in range(1, len(chain)) if chain[i] != chain[i - 1]]
  174. print(f'Writing {len(exp_lp_pairs)} rows to CSV file\n')
  175. csv_writer.writerows(
  176. ((i, j, chain_lp_pair[0], chain_lp_pair[1]) for j, chain_lp_pair in enumerate(exp_lp_pairs)))
  177. all_exps = set(itertools.chain(*exps_in_chains))
  178. chain_info.write(f'Total num. distinct exps across all chains (including warm-up): {len(all_exps)}\n')
  179. true_norm_exp = params['true_norm']['exp']
  180. true_norm_tuple = to_tuple(true_norm_exp)
  181. chain_info.write(f'True norm in some chain(s): {true_norm_tuple in all_exps}\n')
  182. num_chains_in_to_exps = defaultdict(set)
  183. for exp in all_exps:
  184. num_chains_in = operator.countOf(map(operator.contains,
  185. exps_in_chains,
  186. (exp for _ in range(len(exps_in_chains)))
  187. ),
  188. True)
  189. num_chains_in_to_exps[num_chains_in].add(exp)
  190. for num in sorted(num_chains_in_to_exps.keys(), reverse=True):
  191. chain_info.write(f'Out of {len(exps_in_chains)} chains ...\n')
  192. chain_info.write(f'{len(num_chains_in_to_exps[num])} exps are in {num} chains.\n')
  193. csvfile.close()
  194. chain_info.close()
  195. result = pd.read_csv(f"{output_dir}/chain_posteriors_nc.csv")
  196. lik_no_norm = Likelihood(['No-norm', 'true'], the_task, obs, env, w_normative=1 - w_nc)
  197. lik_true_norm = Likelihood(true_norm_exp, the_task, obs, env, w_normative=1 - w_nc)
  198. print(f"lik_no_norm={lik_no_norm},lik_true_norm={lik_true_norm}")
  199. log_post_no_norm = get_log_prob("NORMS", ['No-norm', 'true']) + lik_no_norm
  200. log_post_true_norm = true_norm_log_prior + lik_true_norm
  201. print(result.groupby("chain_number")[["log_posterior"]].agg(['min', 'max', 'mean', 'std']))
  202. hist_plot = result['log_posterior'].hist(by=result['chain_number'])
  203. plt.xticks(rotation=45,fontsize=7)
  204. plt.savefig(f"{output_dir}/nc_hist.jpg")
  205. plt.close()
  206. grouped = result.groupby('chain_number')[["log_posterior"]]
  207. ncols = 2
  208. nrows = int(np.ceil(grouped.ngroups / ncols))
  209. fig, axes = plt.subplots(nrows=nrows, ncols=ncols, figsize=(14, 5 * nrows), sharey=False)
  210. for (key, ax) in zip(grouped.groups.keys(), axes.flatten()):
  211. grouped.get_group(key).plot(ax=ax)
  212. ax.axhline(y=log_post_no_norm, label="No Norm", c='r')
  213. ax.axhline(y=log_post_true_norm, label="True Norm", c='g')
  214. ax.title.set_text("For chain={}".format(key))
  215. ax.legend()
  216. plt.savefig(f"{output_dir}/cnc_movement.jpg")
  217. plt.close()
  218. print ("########## * -------- * ########## || Time for step 4 {:.2f}s ||\
  219. ########## * -------- * ##########".format(time.time()-s))
  220. """ Step 5: Convergence Tests """
  221. def conv_test(chains):
  222. convergence_result, split_data = calculate_R(chains, rhat_step_size)
  223. with open(f'{output_dir}/conv_test_nc.txt', 'w') as f:
  224. f.write(convergence_result.to_string())
  225. return reduce(concat, split_data)
  226. chains = list(map(itemgetter('chain'), chains_and_log_posteriors))
  227. posterior_sample = conv_test(prepare_sequences(chains, warmup=True))
  228. pickle_it(posterior_sample, f'{output_dir}/posterior_nc.pickle')
  229. print ("########## * -------- * ########## || Time for step 5 {:.2f}s ||\
  230. ########## * -------- * ##########".format(time.time()-s))
  231. """ Step 6: Extract Top Norms """
  232. learned_expressions=Counter(map(to_tuple, posterior_sample))
  233. top_norms_with_freq = learned_expressions.most_common(top_n)
  234. top_norms = list(map(operator.itemgetter(0), top_norms_with_freq))
  235. exp_posterior_df = pd.read_csv(f'{output_dir}/chain_posteriors_nc.csv', usecols=['expression','log_posterior'])
  236. exp_posterior_df = exp_posterior_df.drop_duplicates()
  237. exp_posterior_df['post_rank'] = exp_posterior_df['log_posterior'].rank(method='dense',ascending=False)
  238. exp_posterior_df.sort_values('post_rank', inplace=True)
  239. exp_posterior_df['expression'] = exp_posterior_df['expression'].transform(ast.literal_eval)
  240. exp_posterior_df['expression'] = exp_posterior_df['expression'].transform(to_tuple)
  241. exp_posterior_df.to_csv(f'{output_dir}/ranked_posteriors.csv')
  242. def log_posterior(exp, exp_lp_df):
  243. return exp_lp_df.loc[exp_lp_df['expression'] == exp]['log_posterior'].iloc[0]
  244. with open(f'{output_dir}/precision_recall_nc.txt', 'w') as f:
  245. f.write(f"Number of unique Norms in sequence={len(learned_expressions)}\n")
  246. f.write(f"Top {top_norms} norms:\n")
  247. for expression,freq in top_norms_with_freq:
  248. f.write(f"Freq. {freq}, lp {log_posterior(expression, exp_posterior_df)}: ")
  249. f.write(f"{expression}\n")
  250. f.write("\n")
  251. # pr_result=performance(the_task,env,true_norm_exp,learned_expressions,
  252. # folder_name="temp",file_name="top_norm",
  253. # top_n=n,beta=1,repeat=100000,verbose=False)
  254. print ("########## * -------- * ########## || Time for step 6 {:.2f}s ||\
  255. ########## * -------- * ##########".format(time.time()-s))
Tip!

Press p or to see the previous file or, n or to see the next file

Comments

Loading...