1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
|
- # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
- """
- Train a YOLOv5 classifier model on a classification dataset.
- Usage - Single-GPU training:
- $ python classify/train.py --model yolov5s-cls.pt --data imagenette160 --epochs 5 --img 224
- Usage - Multi-GPU DDP training:
- $ python -m torch.distributed.run --nproc_per_node 4 --master_port 2022 classify/train.py --model yolov5s-cls.pt --data imagenet --epochs 5 --img 224 --device 0,1,2,3
- Datasets: --data mnist, fashion-mnist, cifar10, cifar100, imagenette, imagewoof, imagenet, or 'path/to/data'
- YOLOv5-cls models: --model yolov5n-cls.pt, yolov5s-cls.pt, yolov5m-cls.pt, yolov5l-cls.pt, yolov5x-cls.pt
- Torchvision models: --model resnet50, efficientnet_b0, etc. See https://pytorch.org/vision/stable/models.html
- """
- import argparse
- import os
- import subprocess
- import sys
- import time
- from copy import deepcopy
- from datetime import datetime
- from pathlib import Path
- import torch
- import torch.distributed as dist
- import torch.hub as hub
- import torch.optim.lr_scheduler as lr_scheduler
- import torchvision
- from torch.cuda import amp
- from tqdm import tqdm
- FILE = Path(__file__).resolve()
- ROOT = FILE.parents[1] # YOLOv5 root directory
- if str(ROOT) not in sys.path:
- sys.path.append(str(ROOT)) # add ROOT to PATH
- ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
- from classify import val as validate
- from models.experimental import attempt_load
- from models.yolo import ClassificationModel, DetectionModel
- from utils.dataloaders import create_classification_dataloader
- from utils.general import (
- DATASETS_DIR,
- LOGGER,
- TQDM_BAR_FORMAT,
- WorkingDirectory,
- check_git_info,
- check_git_status,
- check_requirements,
- colorstr,
- download,
- increment_path,
- init_seeds,
- print_args,
- yaml_save,
- )
- from utils.loggers import GenericLogger
- from utils.plots import imshow_cls
- from utils.torch_utils import (
- ModelEMA,
- de_parallel,
- model_info,
- reshape_classifier_output,
- select_device,
- smart_DDP,
- smart_optimizer,
- smartCrossEntropyLoss,
- torch_distributed_zero_first,
- )
- LOCAL_RANK = int(os.getenv("LOCAL_RANK", -1)) # https://pytorch.org/docs/stable/elastic/run.html
- RANK = int(os.getenv("RANK", -1))
- WORLD_SIZE = int(os.getenv("WORLD_SIZE", 1))
- GIT_INFO = check_git_info()
- def train(opt, device):
- """Trains a YOLOv5 model, managing datasets, model optimization, logging, and saving checkpoints."""
- init_seeds(opt.seed + 1 + RANK, deterministic=True)
- save_dir, data, bs, epochs, nw, imgsz, pretrained = (
- opt.save_dir,
- Path(opt.data),
- opt.batch_size,
- opt.epochs,
- min(os.cpu_count() - 1, opt.workers),
- opt.imgsz,
- str(opt.pretrained).lower() == "true",
- )
- cuda = device.type != "cpu"
- # Directories
- wdir = save_dir / "weights"
- wdir.mkdir(parents=True, exist_ok=True) # make dir
- last, best = wdir / "last.pt", wdir / "best.pt"
- # Save run settings
- yaml_save(save_dir / "opt.yaml", vars(opt))
- # Logger
- logger = GenericLogger(opt=opt, console_logger=LOGGER) if RANK in {-1, 0} else None
- # Download Dataset
- with torch_distributed_zero_first(LOCAL_RANK), WorkingDirectory(ROOT):
- data_dir = data if data.is_dir() else (DATASETS_DIR / data)
- if not data_dir.is_dir():
- LOGGER.info(f"\nDataset not found ⚠️, missing path {data_dir}, attempting download...")
- t = time.time()
- if str(data) == "imagenet":
- subprocess.run(["bash", str(ROOT / "data/scripts/get_imagenet.sh")], shell=True, check=True)
- else:
- url = f"https://github.com/ultralytics/assets/releases/download/v0.0.0/{data}.zip"
- download(url, dir=data_dir.parent)
- s = f"Dataset download success ✅ ({time.time() - t:.1f}s), saved to {colorstr('bold', data_dir)}\n"
- LOGGER.info(s)
- # Dataloaders
- nc = len([x for x in (data_dir / "train").glob("*") if x.is_dir()]) # number of classes
- trainloader = create_classification_dataloader(
- path=data_dir / "train",
- imgsz=imgsz,
- batch_size=bs // WORLD_SIZE,
- augment=True,
- cache=opt.cache,
- rank=LOCAL_RANK,
- workers=nw,
- )
- test_dir = data_dir / "test" if (data_dir / "test").exists() else data_dir / "val" # data/test or data/val
- if RANK in {-1, 0}:
- testloader = create_classification_dataloader(
- path=test_dir,
- imgsz=imgsz,
- batch_size=bs // WORLD_SIZE * 2,
- augment=False,
- cache=opt.cache,
- rank=-1,
- workers=nw,
- )
- # Model
- with torch_distributed_zero_first(LOCAL_RANK), WorkingDirectory(ROOT):
- if Path(opt.model).is_file() or opt.model.endswith(".pt"):
- model = attempt_load(opt.model, device="cpu", fuse=False)
- elif opt.model in torchvision.models.__dict__: # TorchVision models i.e. resnet50, efficientnet_b0
- model = torchvision.models.__dict__[opt.model](weights="IMAGENET1K_V1" if pretrained else None)
- else:
- m = hub.list("ultralytics/yolov5") # + hub.list('pytorch/vision') # models
- raise ModuleNotFoundError(f"--model {opt.model} not found. Available models are: \n" + "\n".join(m))
- if isinstance(model, DetectionModel):
- LOGGER.warning("WARNING ⚠️ pass YOLOv5 classifier model with '-cls' suffix, i.e. '--model yolov5s-cls.pt'")
- model = ClassificationModel(model=model, nc=nc, cutoff=opt.cutoff or 10) # convert to classification model
- reshape_classifier_output(model, nc) # update class count
- for m in model.modules():
- if not pretrained and hasattr(m, "reset_parameters"):
- m.reset_parameters()
- if isinstance(m, torch.nn.Dropout) and opt.dropout is not None:
- m.p = opt.dropout # set dropout
- for p in model.parameters():
- p.requires_grad = True # for training
- model = model.to(device)
- # Info
- if RANK in {-1, 0}:
- model.names = trainloader.dataset.classes # attach class names
- model.transforms = testloader.dataset.torch_transforms # attach inference transforms
- model_info(model)
- if opt.verbose:
- LOGGER.info(model)
- images, labels = next(iter(trainloader))
- file = imshow_cls(images[:25], labels[:25], names=model.names, f=save_dir / "train_images.jpg")
- logger.log_images(file, name="Train Examples")
- logger.log_graph(model, imgsz) # log model
- # Optimizer
- optimizer = smart_optimizer(model, opt.optimizer, opt.lr0, momentum=0.9, decay=opt.decay)
- # Scheduler
- lrf = 0.01 # final lr (fraction of lr0)
- # lf = lambda x: ((1 + math.cos(x * math.pi / epochs)) / 2) * (1 - lrf) + lrf # cosine
- def lf(x):
- """Linear learning rate scheduler function, scaling learning rate from initial value to `lrf` over `epochs`."""
- return (1 - x / epochs) * (1 - lrf) + lrf # linear
- scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
- # scheduler = lr_scheduler.OneCycleLR(optimizer, max_lr=lr0, total_steps=epochs, pct_start=0.1,
- # final_div_factor=1 / 25 / lrf)
- # EMA
- ema = ModelEMA(model) if RANK in {-1, 0} else None
- # DDP mode
- if cuda and RANK != -1:
- model = smart_DDP(model)
- # Train
- t0 = time.time()
- criterion = smartCrossEntropyLoss(label_smoothing=opt.label_smoothing) # loss function
- best_fitness = 0.0
- scaler = amp.GradScaler(enabled=cuda)
- val = test_dir.stem # 'val' or 'test'
- LOGGER.info(
- f"Image sizes {imgsz} train, {imgsz} test\n"
- f"Using {nw * WORLD_SIZE} dataloader workers\n"
- f"Logging results to {colorstr('bold', save_dir)}\n"
- f"Starting {opt.model} training on {data} dataset with {nc} classes for {epochs} epochs...\n\n"
- f"{'Epoch':>10}{'GPU_mem':>10}{'train_loss':>12}{f'{val}_loss':>12}{'top1_acc':>12}{'top5_acc':>12}"
- )
- for epoch in range(epochs): # loop over the dataset multiple times
- tloss, vloss, fitness = 0.0, 0.0, 0.0 # train loss, val loss, fitness
- model.train()
- if RANK != -1:
- trainloader.sampler.set_epoch(epoch)
- pbar = enumerate(trainloader)
- if RANK in {-1, 0}:
- pbar = tqdm(enumerate(trainloader), total=len(trainloader), bar_format=TQDM_BAR_FORMAT)
- for i, (images, labels) in pbar: # progress bar
- images, labels = images.to(device, non_blocking=True), labels.to(device)
- # Forward
- with amp.autocast(enabled=cuda): # stability issues when enabled
- loss = criterion(model(images), labels)
- # Backward
- scaler.scale(loss).backward()
- # Optimize
- scaler.unscale_(optimizer) # unscale gradients
- torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=10.0) # clip gradients
- scaler.step(optimizer)
- scaler.update()
- optimizer.zero_grad()
- if ema:
- ema.update(model)
- if RANK in {-1, 0}:
- # Print
- tloss = (tloss * i + loss.item()) / (i + 1) # update mean losses
- mem = "%.3gG" % (torch.cuda.memory_reserved() / 1e9 if torch.cuda.is_available() else 0) # (GB)
- pbar.desc = f"{f'{epoch + 1}/{epochs}':>10}{mem:>10}{tloss:>12.3g}" + " " * 36
- # Test
- if i == len(pbar) - 1: # last batch
- top1, top5, vloss = validate.run(
- model=ema.ema, dataloader=testloader, criterion=criterion, pbar=pbar
- ) # test accuracy, loss
- fitness = top1 # define fitness as top1 accuracy
- # Scheduler
- scheduler.step()
- # Log metrics
- if RANK in {-1, 0}:
- # Best fitness
- if fitness > best_fitness:
- best_fitness = fitness
- # Log
- metrics = {
- "train/loss": tloss,
- f"{val}/loss": vloss,
- "metrics/accuracy_top1": top1,
- "metrics/accuracy_top5": top5,
- "lr/0": optimizer.param_groups[0]["lr"],
- } # learning rate
- logger.log_metrics(metrics, epoch)
- # Save model
- final_epoch = epoch + 1 == epochs
- if (not opt.nosave) or final_epoch:
- ckpt = {
- "epoch": epoch,
- "best_fitness": best_fitness,
- "model": deepcopy(ema.ema).half(), # deepcopy(de_parallel(model)).half(),
- "ema": None, # deepcopy(ema.ema).half(),
- "updates": ema.updates,
- "optimizer": None, # optimizer.state_dict(),
- "opt": vars(opt),
- "git": GIT_INFO, # {remote, branch, commit} if a git repo
- "date": datetime.now().isoformat(),
- }
- # Save last, best and delete
- torch.save(ckpt, last)
- if best_fitness == fitness:
- torch.save(ckpt, best)
- del ckpt
- # Train complete
- if RANK in {-1, 0} and final_epoch:
- LOGGER.info(
- f"\nTraining complete ({(time.time() - t0) / 3600:.3f} hours)"
- f"\nResults saved to {colorstr('bold', save_dir)}"
- f"\nPredict: python classify/predict.py --weights {best} --source im.jpg"
- f"\nValidate: python classify/val.py --weights {best} --data {data_dir}"
- f"\nExport: python export.py --weights {best} --include onnx"
- f"\nPyTorch Hub: model = torch.hub.load('ultralytics/yolov5', 'custom', '{best}')"
- f"\nVisualize: https://netron.app\n"
- )
- # Plot examples
- images, labels = (x[:25] for x in next(iter(testloader))) # first 25 images and labels
- pred = torch.max(ema.ema(images.to(device)), 1)[1]
- file = imshow_cls(images, labels, pred, de_parallel(model).names, verbose=False, f=save_dir / "test_images.jpg")
- # Log results
- meta = {"epochs": epochs, "top1_acc": best_fitness, "date": datetime.now().isoformat()}
- logger.log_images(file, name="Test Examples (true-predicted)", epoch=epoch)
- logger.log_model(best, epochs, metadata=meta)
- def parse_opt(known=False):
- """Parses command line arguments for YOLOv5 training including model path, dataset, epochs, and more, returning
- parsed arguments.
- """
- parser = argparse.ArgumentParser()
- parser.add_argument("--model", type=str, default="yolov5s-cls.pt", help="initial weights path")
- parser.add_argument("--data", type=str, default="imagenette160", help="cifar10, cifar100, mnist, imagenet, ...")
- parser.add_argument("--epochs", type=int, default=10, help="total training epochs")
- parser.add_argument("--batch-size", type=int, default=64, help="total batch size for all GPUs")
- parser.add_argument("--imgsz", "--img", "--img-size", type=int, default=224, help="train, val image size (pixels)")
- parser.add_argument("--nosave", action="store_true", help="only save final checkpoint")
- parser.add_argument("--cache", type=str, nargs="?", const="ram", help='--cache images in "ram" (default) or "disk"')
- parser.add_argument("--device", default="", help="cuda device, i.e. 0 or 0,1,2,3 or cpu")
- parser.add_argument("--workers", type=int, default=8, help="max dataloader workers (per RANK in DDP mode)")
- parser.add_argument("--project", default=ROOT / "runs/train-cls", help="save to project/name")
- parser.add_argument("--name", default="exp", help="save to project/name")
- parser.add_argument("--exist-ok", action="store_true", help="existing project/name ok, do not increment")
- parser.add_argument("--pretrained", nargs="?", const=True, default=True, help="start from i.e. --pretrained False")
- parser.add_argument("--optimizer", choices=["SGD", "Adam", "AdamW", "RMSProp"], default="Adam", help="optimizer")
- parser.add_argument("--lr0", type=float, default=0.001, help="initial learning rate")
- parser.add_argument("--decay", type=float, default=5e-5, help="weight decay")
- parser.add_argument("--label-smoothing", type=float, default=0.1, help="Label smoothing epsilon")
- parser.add_argument("--cutoff", type=int, default=None, help="Model layer cutoff index for Classify() head")
- parser.add_argument("--dropout", type=float, default=None, help="Dropout (fraction)")
- parser.add_argument("--verbose", action="store_true", help="Verbose mode")
- parser.add_argument("--seed", type=int, default=0, help="Global training seed")
- parser.add_argument("--local_rank", type=int, default=-1, help="Automatic DDP Multi-GPU argument, do not modify")
- return parser.parse_known_args()[0] if known else parser.parse_args()
- def main(opt):
- """Executes YOLOv5 training with given options, handling device setup and DDP mode; includes pre-training checks."""
- if RANK in {-1, 0}:
- print_args(vars(opt))
- check_git_status()
- check_requirements(ROOT / "requirements.txt")
- # DDP mode
- device = select_device(opt.device, batch_size=opt.batch_size)
- if LOCAL_RANK != -1:
- assert opt.batch_size != -1, "AutoBatch is coming soon for classification, please pass a valid --batch-size"
- assert opt.batch_size % WORLD_SIZE == 0, f"--batch-size {opt.batch_size} must be multiple of WORLD_SIZE"
- assert torch.cuda.device_count() > LOCAL_RANK, "insufficient CUDA devices for DDP command"
- torch.cuda.set_device(LOCAL_RANK)
- device = torch.device("cuda", LOCAL_RANK)
- dist.init_process_group(backend="nccl" if dist.is_nccl_available() else "gloo")
- # Parameters
- opt.save_dir = increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok) # increment run
- # Train
- train(opt, device)
- def run(**kwargs):
- """
- Executes YOLOv5 model training or inference with specified parameters, returning updated options.
- Example: from yolov5 import classify; classify.train.run(data=mnist, imgsz=320, model='yolov5m')
- """
- opt = parse_opt(True)
- for k, v in kwargs.items():
- setattr(opt, k, v)
- main(opt)
- return opt
- if __name__ == "__main__":
- opt = parse_opt()
- main(opt)
|