1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
|
- # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
- """
- YOLO-specific modules.
- Usage:
- $ python models/yolo.py --cfg yolov5s.yaml
- """
- import argparse
- import contextlib
- import math
- import os
- import platform
- import sys
- from copy import deepcopy
- from pathlib import Path
- import torch
- import torch.nn as nn
- FILE = Path(__file__).resolve()
- ROOT = FILE.parents[1] # YOLOv5 root directory
- if str(ROOT) not in sys.path:
- sys.path.append(str(ROOT)) # add ROOT to PATH
- if platform.system() != "Windows":
- ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
- from models.common import (
- C3,
- C3SPP,
- C3TR,
- SPP,
- SPPF,
- Bottleneck,
- BottleneckCSP,
- C3Ghost,
- C3x,
- Classify,
- Concat,
- Contract,
- Conv,
- CrossConv,
- DetectMultiBackend,
- DWConv,
- DWConvTranspose2d,
- Expand,
- Focus,
- GhostBottleneck,
- GhostConv,
- Proto,
- )
- from models.experimental import MixConv2d
- from utils.autoanchor import check_anchor_order
- from utils.general import LOGGER, check_version, check_yaml, colorstr, make_divisible, print_args
- from utils.plots import feature_visualization
- from utils.torch_utils import (
- fuse_conv_and_bn,
- initialize_weights,
- model_info,
- profile,
- scale_img,
- select_device,
- time_sync,
- )
- try:
- import thop # for FLOPs computation
- except ImportError:
- thop = None
- class Detect(nn.Module):
- """YOLOv5 Detect head for processing input tensors and generating detection outputs in object detection models."""
- stride = None # strides computed during build
- dynamic = False # force grid reconstruction
- export = False # export mode
- def __init__(self, nc=80, anchors=(), ch=(), inplace=True):
- """Initializes YOLOv5 detection layer with specified classes, anchors, channels, and inplace operations."""
- super().__init__()
- self.nc = nc # number of classes
- self.no = nc + 5 # number of outputs per anchor
- self.nl = len(anchors) # number of detection layers
- self.na = len(anchors[0]) // 2 # number of anchors
- self.grid = [torch.empty(0) for _ in range(self.nl)] # init grid
- self.anchor_grid = [torch.empty(0) for _ in range(self.nl)] # init anchor grid
- self.register_buffer("anchors", torch.tensor(anchors).float().view(self.nl, -1, 2)) # shape(nl,na,2)
- self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch) # output conv
- self.inplace = inplace # use inplace ops (e.g. slice assignment)
- def forward(self, x):
- """Processes input through YOLOv5 layers, altering shape for detection: `x(bs, 3, ny, nx, 85)`."""
- z = [] # inference output
- for i in range(self.nl):
- x[i] = self.m[i](x[i]) # conv
- bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85)
- x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
- if not self.training: # inference
- if self.dynamic or self.grid[i].shape[2:4] != x[i].shape[2:4]:
- self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i)
- if isinstance(self, Segment): # (boxes + masks)
- xy, wh, conf, mask = x[i].split((2, 2, self.nc + 1, self.no - self.nc - 5), 4)
- xy = (xy.sigmoid() * 2 + self.grid[i]) * self.stride[i] # xy
- wh = (wh.sigmoid() * 2) ** 2 * self.anchor_grid[i] # wh
- y = torch.cat((xy, wh, conf.sigmoid(), mask), 4)
- else: # Detect (boxes only)
- xy, wh, conf = x[i].sigmoid().split((2, 2, self.nc + 1), 4)
- xy = (xy * 2 + self.grid[i]) * self.stride[i] # xy
- wh = (wh * 2) ** 2 * self.anchor_grid[i] # wh
- y = torch.cat((xy, wh, conf), 4)
- z.append(y.view(bs, self.na * nx * ny, self.no))
- return x if self.training else (torch.cat(z, 1),) if self.export else (torch.cat(z, 1), x)
- def _make_grid(self, nx=20, ny=20, i=0, torch_1_10=check_version(torch.__version__, "1.10.0")):
- """Generates a mesh grid for anchor boxes with optional compatibility for torch versions < 1.10."""
- d = self.anchors[i].device
- t = self.anchors[i].dtype
- shape = 1, self.na, ny, nx, 2 # grid shape
- y, x = torch.arange(ny, device=d, dtype=t), torch.arange(nx, device=d, dtype=t)
- yv, xv = torch.meshgrid(y, x, indexing="ij") if torch_1_10 else torch.meshgrid(y, x) # torch>=0.7 compatibility
- grid = torch.stack((xv, yv), 2).expand(shape) - 0.5 # add grid offset, i.e. y = 2.0 * x - 0.5
- anchor_grid = (self.anchors[i] * self.stride[i]).view((1, self.na, 1, 1, 2)).expand(shape)
- return grid, anchor_grid
- class Segment(Detect):
- """YOLOv5 Segment head for segmentation models, extending Detect with mask and prototype layers."""
- def __init__(self, nc=80, anchors=(), nm=32, npr=256, ch=(), inplace=True):
- """Initializes YOLOv5 Segment head with options for mask count, protos, and channel adjustments."""
- super().__init__(nc, anchors, ch, inplace)
- self.nm = nm # number of masks
- self.npr = npr # number of protos
- self.no = 5 + nc + self.nm # number of outputs per anchor
- self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch) # output conv
- self.proto = Proto(ch[0], self.npr, self.nm) # protos
- self.detect = Detect.forward
- def forward(self, x):
- """Processes input through the network, returning detections and prototypes; adjusts output based on
- training/export mode.
- """
- p = self.proto(x[0])
- x = self.detect(self, x)
- return (x, p) if self.training else (x[0], p) if self.export else (x[0], p, x[1])
- class BaseModel(nn.Module):
- """YOLOv5 base model."""
- def forward(self, x, profile=False, visualize=False):
- """Executes a single-scale inference or training pass on the YOLOv5 base model, with options for profiling and
- visualization.
- """
- return self._forward_once(x, profile, visualize) # single-scale inference, train
- def _forward_once(self, x, profile=False, visualize=False):
- """Performs a forward pass on the YOLOv5 model, enabling profiling and feature visualization options."""
- y, dt = [], [] # outputs
- for m in self.model:
- if m.f != -1: # if not from previous layer
- x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f] # from earlier layers
- if profile:
- self._profile_one_layer(m, x, dt)
- x = m(x) # run
- y.append(x if m.i in self.save else None) # save output
- if visualize:
- feature_visualization(x, m.type, m.i, save_dir=visualize)
- return x
- def _profile_one_layer(self, m, x, dt):
- """Profiles a single layer's performance by computing GFLOPs, execution time, and parameters."""
- c = m == self.model[-1] # is final layer, copy input as inplace fix
- o = thop.profile(m, inputs=(x.copy() if c else x,), verbose=False)[0] / 1e9 * 2 if thop else 0 # FLOPs
- t = time_sync()
- for _ in range(10):
- m(x.copy() if c else x)
- dt.append((time_sync() - t) * 100)
- if m == self.model[0]:
- LOGGER.info(f"{'time (ms)':>10s} {'GFLOPs':>10s} {'params':>10s} module")
- LOGGER.info(f"{dt[-1]:10.2f} {o:10.2f} {m.np:10.0f} {m.type}")
- if c:
- LOGGER.info(f"{sum(dt):10.2f} {'-':>10s} {'-':>10s} Total")
- def fuse(self):
- """Fuses Conv2d() and BatchNorm2d() layers in the model to improve inference speed."""
- LOGGER.info("Fusing layers... ")
- for m in self.model.modules():
- if isinstance(m, (Conv, DWConv)) and hasattr(m, "bn"):
- m.conv = fuse_conv_and_bn(m.conv, m.bn) # update conv
- delattr(m, "bn") # remove batchnorm
- m.forward = m.forward_fuse # update forward
- self.info()
- return self
- def info(self, verbose=False, img_size=640):
- """Prints model information given verbosity and image size, e.g., `info(verbose=True, img_size=640)`."""
- model_info(self, verbose, img_size)
- def _apply(self, fn):
- """Applies transformations like to(), cpu(), cuda(), half() to model tensors excluding parameters or registered
- buffers.
- """
- self = super()._apply(fn)
- m = self.model[-1] # Detect()
- if isinstance(m, (Detect, Segment)):
- m.stride = fn(m.stride)
- m.grid = list(map(fn, m.grid))
- if isinstance(m.anchor_grid, list):
- m.anchor_grid = list(map(fn, m.anchor_grid))
- return self
- class DetectionModel(BaseModel):
- """YOLOv5 detection model class for object detection tasks, supporting custom configurations and anchors."""
- def __init__(self, cfg="yolov5s.yaml", ch=3, nc=None, anchors=None):
- """Initializes YOLOv5 model with configuration file, input channels, number of classes, and custom anchors."""
- super().__init__()
- if isinstance(cfg, dict):
- self.yaml = cfg # model dict
- else: # is *.yaml
- import yaml # for torch hub
- self.yaml_file = Path(cfg).name
- with open(cfg, encoding="ascii", errors="ignore") as f:
- self.yaml = yaml.safe_load(f) # model dict
- # Define model
- ch = self.yaml["ch"] = self.yaml.get("ch", ch) # input channels
- if nc and nc != self.yaml["nc"]:
- LOGGER.info(f"Overriding model.yaml nc={self.yaml['nc']} with nc={nc}")
- self.yaml["nc"] = nc # override yaml value
- if anchors:
- LOGGER.info(f"Overriding model.yaml anchors with anchors={anchors}")
- self.yaml["anchors"] = round(anchors) # override yaml value
- self.model, self.save = parse_model(deepcopy(self.yaml), ch=[ch]) # model, savelist
- self.names = [str(i) for i in range(self.yaml["nc"])] # default names
- self.inplace = self.yaml.get("inplace", True)
- # Build strides, anchors
- m = self.model[-1] # Detect()
- if isinstance(m, (Detect, Segment)):
- def _forward(x):
- """Passes the input 'x' through the model and returns the processed output."""
- return self.forward(x)[0] if isinstance(m, Segment) else self.forward(x)
- s = 256 # 2x min stride
- m.inplace = self.inplace
- m.stride = torch.tensor([s / x.shape[-2] for x in _forward(torch.zeros(1, ch, s, s))]) # forward
- check_anchor_order(m)
- m.anchors /= m.stride.view(-1, 1, 1)
- self.stride = m.stride
- self._initialize_biases() # only run once
- # Init weights, biases
- initialize_weights(self)
- self.info()
- LOGGER.info("")
- def forward(self, x, augment=False, profile=False, visualize=False):
- """Performs single-scale or augmented inference and may include profiling or visualization."""
- if augment:
- return self._forward_augment(x) # augmented inference, None
- return self._forward_once(x, profile, visualize) # single-scale inference, train
- def _forward_augment(self, x):
- """Performs augmented inference across different scales and flips, returning combined detections."""
- img_size = x.shape[-2:] # height, width
- s = [1, 0.83, 0.67] # scales
- f = [None, 3, None] # flips (2-ud, 3-lr)
- y = [] # outputs
- for si, fi in zip(s, f):
- xi = scale_img(x.flip(fi) if fi else x, si, gs=int(self.stride.max()))
- yi = self._forward_once(xi)[0] # forward
- # cv2.imwrite(f'img_{si}.jpg', 255 * xi[0].cpu().numpy().transpose((1, 2, 0))[:, :, ::-1]) # save
- yi = self._descale_pred(yi, fi, si, img_size)
- y.append(yi)
- y = self._clip_augmented(y) # clip augmented tails
- return torch.cat(y, 1), None # augmented inference, train
- def _descale_pred(self, p, flips, scale, img_size):
- """De-scales predictions from augmented inference, adjusting for flips and image size."""
- if self.inplace:
- p[..., :4] /= scale # de-scale
- if flips == 2:
- p[..., 1] = img_size[0] - p[..., 1] # de-flip ud
- elif flips == 3:
- p[..., 0] = img_size[1] - p[..., 0] # de-flip lr
- else:
- x, y, wh = p[..., 0:1] / scale, p[..., 1:2] / scale, p[..., 2:4] / scale # de-scale
- if flips == 2:
- y = img_size[0] - y # de-flip ud
- elif flips == 3:
- x = img_size[1] - x # de-flip lr
- p = torch.cat((x, y, wh, p[..., 4:]), -1)
- return p
- def _clip_augmented(self, y):
- """Clips augmented inference tails for YOLOv5 models, affecting first and last tensors based on grid points and
- layer counts.
- """
- nl = self.model[-1].nl # number of detection layers (P3-P5)
- g = sum(4**x for x in range(nl)) # grid points
- e = 1 # exclude layer count
- i = (y[0].shape[1] // g) * sum(4**x for x in range(e)) # indices
- y[0] = y[0][:, :-i] # large
- i = (y[-1].shape[1] // g) * sum(4 ** (nl - 1 - x) for x in range(e)) # indices
- y[-1] = y[-1][:, i:] # small
- return y
- def _initialize_biases(self, cf=None):
- """
- Initializes biases for YOLOv5's Detect() module, optionally using class frequencies (cf).
- For details see https://arxiv.org/abs/1708.02002 section 3.3.
- """
- # cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1.
- m = self.model[-1] # Detect() module
- for mi, s in zip(m.m, m.stride): # from
- b = mi.bias.view(m.na, -1) # conv.bias(255) to (3,85)
- b.data[:, 4] += math.log(8 / (640 / s) ** 2) # obj (8 objects per 640 image)
- b.data[:, 5 : 5 + m.nc] += (
- math.log(0.6 / (m.nc - 0.99999)) if cf is None else torch.log(cf / cf.sum())
- ) # cls
- mi.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
- Model = DetectionModel # retain YOLOv5 'Model' class for backwards compatibility
- class SegmentationModel(DetectionModel):
- """YOLOv5 segmentation model for object detection and segmentation tasks with configurable parameters."""
- def __init__(self, cfg="yolov5s-seg.yaml", ch=3, nc=None, anchors=None):
- """Initializes a YOLOv5 segmentation model with configurable params: cfg (str) for configuration, ch (int) for channels, nc (int) for num classes, anchors (list)."""
- super().__init__(cfg, ch, nc, anchors)
- class ClassificationModel(BaseModel):
- """YOLOv5 classification model for image classification tasks, initialized with a config file or detection model."""
- def __init__(self, cfg=None, model=None, nc=1000, cutoff=10):
- """Initializes YOLOv5 model with config file `cfg`, input channels `ch`, number of classes `nc`, and `cuttoff`
- index.
- """
- super().__init__()
- self._from_detection_model(model, nc, cutoff) if model is not None else self._from_yaml(cfg)
- def _from_detection_model(self, model, nc=1000, cutoff=10):
- """Creates a classification model from a YOLOv5 detection model, slicing at `cutoff` and adding a classification
- layer.
- """
- if isinstance(model, DetectMultiBackend):
- model = model.model # unwrap DetectMultiBackend
- model.model = model.model[:cutoff] # backbone
- m = model.model[-1] # last layer
- ch = m.conv.in_channels if hasattr(m, "conv") else m.cv1.conv.in_channels # ch into module
- c = Classify(ch, nc) # Classify()
- c.i, c.f, c.type = m.i, m.f, "models.common.Classify" # index, from, type
- model.model[-1] = c # replace
- self.model = model.model
- self.stride = model.stride
- self.save = []
- self.nc = nc
- def _from_yaml(self, cfg):
- """Creates a YOLOv5 classification model from a specified *.yaml configuration file."""
- self.model = None
- def parse_model(d, ch):
- """Parses a YOLOv5 model from a dict `d`, configuring layers based on input channels `ch` and model architecture."""
- LOGGER.info(f"\n{'':>3}{'from':>18}{'n':>3}{'params':>10} {'module':<40}{'arguments':<30}")
- anchors, nc, gd, gw, act, ch_mul = (
- d["anchors"],
- d["nc"],
- d["depth_multiple"],
- d["width_multiple"],
- d.get("activation"),
- d.get("channel_multiple"),
- )
- if act:
- Conv.default_act = eval(act) # redefine default activation, i.e. Conv.default_act = nn.SiLU()
- LOGGER.info(f"{colorstr('activation:')} {act}") # print
- if not ch_mul:
- ch_mul = 8
- na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors # number of anchors
- no = na * (nc + 5) # number of outputs = anchors * (classes + 5)
- layers, save, c2 = [], [], ch[-1] # layers, savelist, ch out
- for i, (f, n, m, args) in enumerate(d["backbone"] + d["head"]): # from, number, module, args
- m = eval(m) if isinstance(m, str) else m # eval strings
- for j, a in enumerate(args):
- with contextlib.suppress(NameError):
- args[j] = eval(a) if isinstance(a, str) else a # eval strings
- n = n_ = max(round(n * gd), 1) if n > 1 else n # depth gain
- if m in {
- Conv,
- GhostConv,
- Bottleneck,
- GhostBottleneck,
- SPP,
- SPPF,
- DWConv,
- MixConv2d,
- Focus,
- CrossConv,
- BottleneckCSP,
- C3,
- C3TR,
- C3SPP,
- C3Ghost,
- nn.ConvTranspose2d,
- DWConvTranspose2d,
- C3x,
- }:
- c1, c2 = ch[f], args[0]
- if c2 != no: # if not output
- c2 = make_divisible(c2 * gw, ch_mul)
- args = [c1, c2, *args[1:]]
- if m in {BottleneckCSP, C3, C3TR, C3Ghost, C3x}:
- args.insert(2, n) # number of repeats
- n = 1
- elif m is nn.BatchNorm2d:
- args = [ch[f]]
- elif m is Concat:
- c2 = sum(ch[x] for x in f)
- # TODO: channel, gw, gd
- elif m in {Detect, Segment}:
- args.append([ch[x] for x in f])
- if isinstance(args[1], int): # number of anchors
- args[1] = [list(range(args[1] * 2))] * len(f)
- if m is Segment:
- args[3] = make_divisible(args[3] * gw, ch_mul)
- elif m is Contract:
- c2 = ch[f] * args[0] ** 2
- elif m is Expand:
- c2 = ch[f] // args[0] ** 2
- else:
- c2 = ch[f]
- m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args) # module
- t = str(m)[8:-2].replace("__main__.", "") # module type
- np = sum(x.numel() for x in m_.parameters()) # number params
- m_.i, m_.f, m_.type, m_.np = i, f, t, np # attach index, 'from' index, type, number params
- LOGGER.info(f"{i:>3}{str(f):>18}{n_:>3}{np:10.0f} {t:<40}{str(args):<30}") # print
- save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1) # append to savelist
- layers.append(m_)
- if i == 0:
- ch = []
- ch.append(c2)
- return nn.Sequential(*layers), sorted(save)
- if __name__ == "__main__":
- parser = argparse.ArgumentParser()
- parser.add_argument("--cfg", type=str, default="yolov5s.yaml", help="model.yaml")
- parser.add_argument("--batch-size", type=int, default=1, help="total batch size for all GPUs")
- parser.add_argument("--device", default="", help="cuda device, i.e. 0 or 0,1,2,3 or cpu")
- parser.add_argument("--profile", action="store_true", help="profile model speed")
- parser.add_argument("--line-profile", action="store_true", help="profile model speed layer by layer")
- parser.add_argument("--test", action="store_true", help="test all yolo*.yaml")
- opt = parser.parse_args()
- opt.cfg = check_yaml(opt.cfg) # check YAML
- print_args(vars(opt))
- device = select_device(opt.device)
- # Create model
- im = torch.rand(opt.batch_size, 3, 640, 640).to(device)
- model = Model(opt.cfg).to(device)
- # Options
- if opt.line_profile: # profile layer by layer
- model(im, profile=True)
- elif opt.profile: # profile forward-backward
- results = profile(input=im, ops=[model], n=3)
- elif opt.test: # test all models
- for cfg in Path(ROOT / "models").rglob("yolo*.yaml"):
- try:
- _ = Model(cfg)
- except Exception as e:
- print(f"Error in {cfg}: {e}")
- else: # report fused model summary
- model.fuse()
|