1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
|
- # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
- """Common modules."""
- import ast
- import contextlib
- import json
- import math
- import platform
- import warnings
- import zipfile
- from collections import OrderedDict, namedtuple
- from copy import copy
- from pathlib import Path
- from urllib.parse import urlparse
- import cv2
- import numpy as np
- import pandas as pd
- import requests
- import torch
- import torch.nn as nn
- from PIL import Image
- from torch.cuda import amp
- # Import 'ultralytics' package or install if missing
- try:
- import ultralytics
- assert hasattr(ultralytics, "__version__") # verify package is not directory
- except (ImportError, AssertionError):
- import os
- os.system("pip install -U ultralytics")
- import ultralytics
- from ultralytics.utils.plotting import Annotator, colors, save_one_box
- from utils import TryExcept
- from utils.dataloaders import exif_transpose, letterbox
- from utils.general import (
- LOGGER,
- ROOT,
- Profile,
- check_requirements,
- check_suffix,
- check_version,
- colorstr,
- increment_path,
- is_jupyter,
- make_divisible,
- non_max_suppression,
- scale_boxes,
- xywh2xyxy,
- xyxy2xywh,
- yaml_load,
- )
- from utils.torch_utils import copy_attr, smart_inference_mode
- def autopad(k, p=None, d=1):
- """
- Pads kernel to 'same' output shape, adjusting for optional dilation; returns padding size.
- `k`: kernel, `p`: padding, `d`: dilation.
- """
- if d > 1:
- k = d * (k - 1) + 1 if isinstance(k, int) else [d * (x - 1) + 1 for x in k] # actual kernel-size
- if p is None:
- p = k // 2 if isinstance(k, int) else [x // 2 for x in k] # auto-pad
- return p
- class Conv(nn.Module):
- """Applies a convolution, batch normalization, and activation function to an input tensor in a neural network."""
- default_act = nn.SiLU() # default activation
- def __init__(self, c1, c2, k=1, s=1, p=None, g=1, d=1, act=True):
- """Initializes a standard convolution layer with optional batch normalization and activation."""
- super().__init__()
- self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p, d), groups=g, dilation=d, bias=False)
- self.bn = nn.BatchNorm2d(c2)
- self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()
- def forward(self, x):
- """Applies a convolution followed by batch normalization and an activation function to the input tensor `x`."""
- return self.act(self.bn(self.conv(x)))
- def forward_fuse(self, x):
- """Applies a fused convolution and activation function to the input tensor `x`."""
- return self.act(self.conv(x))
- class DWConv(Conv):
- """Implements a depth-wise convolution layer with optional activation for efficient spatial filtering."""
- def __init__(self, c1, c2, k=1, s=1, d=1, act=True):
- """Initializes a depth-wise convolution layer with optional activation; args: input channels (c1), output
- channels (c2), kernel size (k), stride (s), dilation (d), and activation flag (act).
- """
- super().__init__(c1, c2, k, s, g=math.gcd(c1, c2), d=d, act=act)
- class DWConvTranspose2d(nn.ConvTranspose2d):
- """A depth-wise transpose convolutional layer for upsampling in neural networks, particularly in YOLOv5 models."""
- def __init__(self, c1, c2, k=1, s=1, p1=0, p2=0):
- """Initializes a depth-wise transpose convolutional layer for YOLOv5; args: input channels (c1), output channels
- (c2), kernel size (k), stride (s), input padding (p1), output padding (p2).
- """
- super().__init__(c1, c2, k, s, p1, p2, groups=math.gcd(c1, c2))
- class TransformerLayer(nn.Module):
- """Transformer layer with multihead attention and linear layers, optimized by removing LayerNorm."""
- def __init__(self, c, num_heads):
- """
- Initializes a transformer layer, sans LayerNorm for performance, with multihead attention and linear layers.
- See as described in https://arxiv.org/abs/2010.11929.
- """
- super().__init__()
- self.q = nn.Linear(c, c, bias=False)
- self.k = nn.Linear(c, c, bias=False)
- self.v = nn.Linear(c, c, bias=False)
- self.ma = nn.MultiheadAttention(embed_dim=c, num_heads=num_heads)
- self.fc1 = nn.Linear(c, c, bias=False)
- self.fc2 = nn.Linear(c, c, bias=False)
- def forward(self, x):
- """Performs forward pass using MultiheadAttention and two linear transformations with residual connections."""
- x = self.ma(self.q(x), self.k(x), self.v(x))[0] + x
- x = self.fc2(self.fc1(x)) + x
- return x
- class TransformerBlock(nn.Module):
- """A Transformer block for vision tasks with convolution, position embeddings, and Transformer layers."""
- def __init__(self, c1, c2, num_heads, num_layers):
- """Initializes a Transformer block for vision tasks, adapting dimensions if necessary and stacking specified
- layers.
- """
- super().__init__()
- self.conv = None
- if c1 != c2:
- self.conv = Conv(c1, c2)
- self.linear = nn.Linear(c2, c2) # learnable position embedding
- self.tr = nn.Sequential(*(TransformerLayer(c2, num_heads) for _ in range(num_layers)))
- self.c2 = c2
- def forward(self, x):
- """Processes input through an optional convolution, followed by Transformer layers and position embeddings for
- object detection.
- """
- if self.conv is not None:
- x = self.conv(x)
- b, _, w, h = x.shape
- p = x.flatten(2).permute(2, 0, 1)
- return self.tr(p + self.linear(p)).permute(1, 2, 0).reshape(b, self.c2, w, h)
- class Bottleneck(nn.Module):
- """A bottleneck layer with optional shortcut and group convolution for efficient feature extraction."""
- def __init__(self, c1, c2, shortcut=True, g=1, e=0.5):
- """Initializes a standard bottleneck layer with optional shortcut and group convolution, supporting channel
- expansion.
- """
- super().__init__()
- c_ = int(c2 * e) # hidden channels
- self.cv1 = Conv(c1, c_, 1, 1)
- self.cv2 = Conv(c_, c2, 3, 1, g=g)
- self.add = shortcut and c1 == c2
- def forward(self, x):
- """Processes input through two convolutions, optionally adds shortcut if channel dimensions match; input is a
- tensor.
- """
- return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
- class BottleneckCSP(nn.Module):
- """CSP bottleneck layer for feature extraction with cross-stage partial connections and optional shortcuts."""
- def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
- """Initializes CSP bottleneck with optional shortcuts; args: ch_in, ch_out, number of repeats, shortcut bool,
- groups, expansion.
- """
- super().__init__()
- c_ = int(c2 * e) # hidden channels
- self.cv1 = Conv(c1, c_, 1, 1)
- self.cv2 = nn.Conv2d(c1, c_, 1, 1, bias=False)
- self.cv3 = nn.Conv2d(c_, c_, 1, 1, bias=False)
- self.cv4 = Conv(2 * c_, c2, 1, 1)
- self.bn = nn.BatchNorm2d(2 * c_) # applied to cat(cv2, cv3)
- self.act = nn.SiLU()
- self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))
- def forward(self, x):
- """Performs forward pass by applying layers, activation, and concatenation on input x, returning feature-
- enhanced output.
- """
- y1 = self.cv3(self.m(self.cv1(x)))
- y2 = self.cv2(x)
- return self.cv4(self.act(self.bn(torch.cat((y1, y2), 1))))
- class CrossConv(nn.Module):
- """Implements a cross convolution layer with downsampling, expansion, and optional shortcut."""
- def __init__(self, c1, c2, k=3, s=1, g=1, e=1.0, shortcut=False):
- """
- Initializes CrossConv with downsampling, expanding, and optionally shortcutting; `c1` input, `c2` output
- channels.
- Inputs are ch_in, ch_out, kernel, stride, groups, expansion, shortcut.
- """
- super().__init__()
- c_ = int(c2 * e) # hidden channels
- self.cv1 = Conv(c1, c_, (1, k), (1, s))
- self.cv2 = Conv(c_, c2, (k, 1), (s, 1), g=g)
- self.add = shortcut and c1 == c2
- def forward(self, x):
- """Performs feature sampling, expanding, and applies shortcut if channels match; expects `x` input tensor."""
- return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
- class C3(nn.Module):
- """Implements a CSP Bottleneck module with three convolutions for enhanced feature extraction in neural networks."""
- def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
- """Initializes C3 module with options for channel count, bottleneck repetition, shortcut usage, group
- convolutions, and expansion.
- """
- super().__init__()
- c_ = int(c2 * e) # hidden channels
- self.cv1 = Conv(c1, c_, 1, 1)
- self.cv2 = Conv(c1, c_, 1, 1)
- self.cv3 = Conv(2 * c_, c2, 1) # optional act=FReLU(c2)
- self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))
- def forward(self, x):
- """Performs forward propagation using concatenated outputs from two convolutions and a Bottleneck sequence."""
- return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), 1))
- class C3x(C3):
- """Extends the C3 module with cross-convolutions for enhanced feature extraction in neural networks."""
- def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
- """Initializes C3x module with cross-convolutions, extending C3 with customizable channel dimensions, groups,
- and expansion.
- """
- super().__init__(c1, c2, n, shortcut, g, e)
- c_ = int(c2 * e)
- self.m = nn.Sequential(*(CrossConv(c_, c_, 3, 1, g, 1.0, shortcut) for _ in range(n)))
- class C3TR(C3):
- """C3 module with TransformerBlock for enhanced feature extraction in object detection models."""
- def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
- """Initializes C3 module with TransformerBlock for enhanced feature extraction, accepts channel sizes, shortcut
- config, group, and expansion.
- """
- super().__init__(c1, c2, n, shortcut, g, e)
- c_ = int(c2 * e)
- self.m = TransformerBlock(c_, c_, 4, n)
- class C3SPP(C3):
- """Extends the C3 module with an SPP layer for enhanced spatial feature extraction and customizable channels."""
- def __init__(self, c1, c2, k=(5, 9, 13), n=1, shortcut=True, g=1, e=0.5):
- """Initializes a C3 module with SPP layer for advanced spatial feature extraction, given channel sizes, kernel
- sizes, shortcut, group, and expansion ratio.
- """
- super().__init__(c1, c2, n, shortcut, g, e)
- c_ = int(c2 * e)
- self.m = SPP(c_, c_, k)
- class C3Ghost(C3):
- """Implements a C3 module with Ghost Bottlenecks for efficient feature extraction in YOLOv5."""
- def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
- """Initializes YOLOv5's C3 module with Ghost Bottlenecks for efficient feature extraction."""
- super().__init__(c1, c2, n, shortcut, g, e)
- c_ = int(c2 * e) # hidden channels
- self.m = nn.Sequential(*(GhostBottleneck(c_, c_) for _ in range(n)))
- class SPP(nn.Module):
- """Implements Spatial Pyramid Pooling (SPP) for feature extraction, ref: https://arxiv.org/abs/1406.4729."""
- def __init__(self, c1, c2, k=(5, 9, 13)):
- """Initializes SPP layer with Spatial Pyramid Pooling, ref: https://arxiv.org/abs/1406.4729, args: c1 (input channels), c2 (output channels), k (kernel sizes)."""
- super().__init__()
- c_ = c1 // 2 # hidden channels
- self.cv1 = Conv(c1, c_, 1, 1)
- self.cv2 = Conv(c_ * (len(k) + 1), c2, 1, 1)
- self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k])
- def forward(self, x):
- """Applies convolution and max pooling layers to the input tensor `x`, concatenates results, and returns output
- tensor.
- """
- x = self.cv1(x)
- with warnings.catch_warnings():
- warnings.simplefilter("ignore") # suppress torch 1.9.0 max_pool2d() warning
- return self.cv2(torch.cat([x] + [m(x) for m in self.m], 1))
- class SPPF(nn.Module):
- """Implements a fast Spatial Pyramid Pooling (SPPF) layer for efficient feature extraction in YOLOv5 models."""
- def __init__(self, c1, c2, k=5):
- """
- Initializes YOLOv5 SPPF layer with given channels and kernel size for YOLOv5 model, combining convolution and
- max pooling.
- Equivalent to SPP(k=(5, 9, 13)).
- """
- super().__init__()
- c_ = c1 // 2 # hidden channels
- self.cv1 = Conv(c1, c_, 1, 1)
- self.cv2 = Conv(c_ * 4, c2, 1, 1)
- self.m = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2)
- def forward(self, x):
- """Processes input through a series of convolutions and max pooling operations for feature extraction."""
- x = self.cv1(x)
- with warnings.catch_warnings():
- warnings.simplefilter("ignore") # suppress torch 1.9.0 max_pool2d() warning
- y1 = self.m(x)
- y2 = self.m(y1)
- return self.cv2(torch.cat((x, y1, y2, self.m(y2)), 1))
- class Focus(nn.Module):
- """Focuses spatial information into channel space using slicing and convolution for efficient feature extraction."""
- def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True):
- """Initializes Focus module to concentrate width-height info into channel space with configurable convolution
- parameters.
- """
- super().__init__()
- self.conv = Conv(c1 * 4, c2, k, s, p, g, act=act)
- # self.contract = Contract(gain=2)
- def forward(self, x):
- """Processes input through Focus mechanism, reshaping (b,c,w,h) to (b,4c,w/2,h/2) then applies convolution."""
- return self.conv(torch.cat((x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]), 1))
- # return self.conv(self.contract(x))
- class GhostConv(nn.Module):
- """Implements Ghost Convolution for efficient feature extraction, see https://github.com/huawei-noah/ghostnet."""
- def __init__(self, c1, c2, k=1, s=1, g=1, act=True):
- """Initializes GhostConv with in/out channels, kernel size, stride, groups, and activation; halves out channels
- for efficiency.
- """
- super().__init__()
- c_ = c2 // 2 # hidden channels
- self.cv1 = Conv(c1, c_, k, s, None, g, act=act)
- self.cv2 = Conv(c_, c_, 5, 1, None, c_, act=act)
- def forward(self, x):
- """Performs forward pass, concatenating outputs of two convolutions on input `x`: shape (B,C,H,W)."""
- y = self.cv1(x)
- return torch.cat((y, self.cv2(y)), 1)
- class GhostBottleneck(nn.Module):
- """Efficient bottleneck layer using Ghost Convolutions, see https://github.com/huawei-noah/ghostnet."""
- def __init__(self, c1, c2, k=3, s=1):
- """Initializes GhostBottleneck with ch_in `c1`, ch_out `c2`, kernel size `k`, stride `s`; see https://github.com/huawei-noah/ghostnet."""
- super().__init__()
- c_ = c2 // 2
- self.conv = nn.Sequential(
- GhostConv(c1, c_, 1, 1), # pw
- DWConv(c_, c_, k, s, act=False) if s == 2 else nn.Identity(), # dw
- GhostConv(c_, c2, 1, 1, act=False),
- ) # pw-linear
- self.shortcut = (
- nn.Sequential(DWConv(c1, c1, k, s, act=False), Conv(c1, c2, 1, 1, act=False)) if s == 2 else nn.Identity()
- )
- def forward(self, x):
- """Processes input through conv and shortcut layers, returning their summed output."""
- return self.conv(x) + self.shortcut(x)
- class Contract(nn.Module):
- """Contracts spatial dimensions into channel dimensions for efficient processing in neural networks."""
- def __init__(self, gain=2):
- """Initializes a layer to contract spatial dimensions (width-height) into channels, e.g., input shape
- (1,64,80,80) to (1,256,40,40).
- """
- super().__init__()
- self.gain = gain
- def forward(self, x):
- """Processes input tensor to expand channel dimensions by contracting spatial dimensions, yielding output shape
- `(b, c*s*s, h//s, w//s)`.
- """
- b, c, h, w = x.size() # assert (h / s == 0) and (W / s == 0), 'Indivisible gain'
- s = self.gain
- x = x.view(b, c, h // s, s, w // s, s) # x(1,64,40,2,40,2)
- x = x.permute(0, 3, 5, 1, 2, 4).contiguous() # x(1,2,2,64,40,40)
- return x.view(b, c * s * s, h // s, w // s) # x(1,256,40,40)
- class Expand(nn.Module):
- """Expands spatial dimensions by redistributing channels, e.g., from (1,64,80,80) to (1,16,160,160)."""
- def __init__(self, gain=2):
- """
- Initializes the Expand module to increase spatial dimensions by redistributing channels, with an optional gain
- factor.
- Example: x(1,64,80,80) to x(1,16,160,160).
- """
- super().__init__()
- self.gain = gain
- def forward(self, x):
- """Processes input tensor x to expand spatial dimensions by redistributing channels, requiring C / gain^2 ==
- 0.
- """
- b, c, h, w = x.size() # assert C / s ** 2 == 0, 'Indivisible gain'
- s = self.gain
- x = x.view(b, s, s, c // s**2, h, w) # x(1,2,2,16,80,80)
- x = x.permute(0, 3, 4, 1, 5, 2).contiguous() # x(1,16,80,2,80,2)
- return x.view(b, c // s**2, h * s, w * s) # x(1,16,160,160)
- class Concat(nn.Module):
- """Concatenates tensors along a specified dimension for efficient tensor manipulation in neural networks."""
- def __init__(self, dimension=1):
- """Initializes a Concat module to concatenate tensors along a specified dimension."""
- super().__init__()
- self.d = dimension
- def forward(self, x):
- """Concatenates a list of tensors along a specified dimension; `x` is a list of tensors, `dimension` is an
- int.
- """
- return torch.cat(x, self.d)
- class DetectMultiBackend(nn.Module):
- """YOLOv5 MultiBackend class for inference on various backends including PyTorch, ONNX, TensorRT, and more."""
- def __init__(self, weights="yolov5s.pt", device=torch.device("cpu"), dnn=False, data=None, fp16=False, fuse=True):
- """Initializes DetectMultiBackend with support for various inference backends, including PyTorch and ONNX."""
- # PyTorch: weights = *.pt
- # TorchScript: *.torchscript
- # ONNX Runtime: *.onnx
- # ONNX OpenCV DNN: *.onnx --dnn
- # OpenVINO: *_openvino_model
- # CoreML: *.mlpackage
- # TensorRT: *.engine
- # TensorFlow SavedModel: *_saved_model
- # TensorFlow GraphDef: *.pb
- # TensorFlow Lite: *.tflite
- # TensorFlow Edge TPU: *_edgetpu.tflite
- # PaddlePaddle: *_paddle_model
- from models.experimental import attempt_download, attempt_load # scoped to avoid circular import
- super().__init__()
- w = str(weights[0] if isinstance(weights, list) else weights)
- pt, jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, paddle, triton = self._model_type(w)
- fp16 &= pt or jit or onnx or engine or triton # FP16
- nhwc = coreml or saved_model or pb or tflite or edgetpu # BHWC formats (vs torch BCWH)
- stride = 32 # default stride
- cuda = torch.cuda.is_available() and device.type != "cpu" # use CUDA
- if not (pt or triton):
- w = attempt_download(w) # download if not local
- if pt: # PyTorch
- model = attempt_load(weights if isinstance(weights, list) else w, device=device, inplace=True, fuse=fuse)
- stride = max(int(model.stride.max()), 32) # model stride
- names = model.module.names if hasattr(model, "module") else model.names # get class names
- model.half() if fp16 else model.float()
- self.model = model # explicitly assign for to(), cpu(), cuda(), half()
- elif jit: # TorchScript
- LOGGER.info(f"Loading {w} for TorchScript inference...")
- extra_files = {"config.txt": ""} # model metadata
- model = torch.jit.load(w, _extra_files=extra_files, map_location=device)
- model.half() if fp16 else model.float()
- if extra_files["config.txt"]: # load metadata dict
- d = json.loads(
- extra_files["config.txt"],
- object_hook=lambda d: {int(k) if k.isdigit() else k: v for k, v in d.items()},
- )
- stride, names = int(d["stride"]), d["names"]
- elif dnn: # ONNX OpenCV DNN
- LOGGER.info(f"Loading {w} for ONNX OpenCV DNN inference...")
- check_requirements("opencv-python>=4.5.4")
- net = cv2.dnn.readNetFromONNX(w)
- elif onnx: # ONNX Runtime
- LOGGER.info(f"Loading {w} for ONNX Runtime inference...")
- check_requirements(("onnx", "onnxruntime-gpu" if cuda else "onnxruntime"))
- import onnxruntime
- providers = ["CUDAExecutionProvider", "CPUExecutionProvider"] if cuda else ["CPUExecutionProvider"]
- session = onnxruntime.InferenceSession(w, providers=providers)
- output_names = [x.name for x in session.get_outputs()]
- meta = session.get_modelmeta().custom_metadata_map # metadata
- if "stride" in meta:
- stride, names = int(meta["stride"]), eval(meta["names"])
- elif xml: # OpenVINO
- LOGGER.info(f"Loading {w} for OpenVINO inference...")
- check_requirements("openvino>=2023.0") # requires openvino-dev: https://pypi.org/project/openvino-dev/
- from openvino.runtime import Core, Layout, get_batch
- core = Core()
- if not Path(w).is_file(): # if not *.xml
- w = next(Path(w).glob("*.xml")) # get *.xml file from *_openvino_model dir
- ov_model = core.read_model(model=w, weights=Path(w).with_suffix(".bin"))
- if ov_model.get_parameters()[0].get_layout().empty:
- ov_model.get_parameters()[0].set_layout(Layout("NCHW"))
- batch_dim = get_batch(ov_model)
- if batch_dim.is_static:
- batch_size = batch_dim.get_length()
- ov_compiled_model = core.compile_model(ov_model, device_name="AUTO") # AUTO selects best available device
- stride, names = self._load_metadata(Path(w).with_suffix(".yaml")) # load metadata
- elif engine: # TensorRT
- LOGGER.info(f"Loading {w} for TensorRT inference...")
- import tensorrt as trt # https://developer.nvidia.com/nvidia-tensorrt-download
- check_version(trt.__version__, "7.0.0", hard=True) # require tensorrt>=7.0.0
- if device.type == "cpu":
- device = torch.device("cuda:0")
- Binding = namedtuple("Binding", ("name", "dtype", "shape", "data", "ptr"))
- logger = trt.Logger(trt.Logger.INFO)
- with open(w, "rb") as f, trt.Runtime(logger) as runtime:
- model = runtime.deserialize_cuda_engine(f.read())
- context = model.create_execution_context()
- bindings = OrderedDict()
- output_names = []
- fp16 = False # default updated below
- dynamic = False
- is_trt10 = not hasattr(model, "num_bindings")
- num = range(model.num_io_tensors) if is_trt10 else range(model.num_bindings)
- for i in num:
- if is_trt10:
- name = model.get_tensor_name(i)
- dtype = trt.nptype(model.get_tensor_dtype(name))
- is_input = model.get_tensor_mode(name) == trt.TensorIOMode.INPUT
- if is_input:
- if -1 in tuple(model.get_tensor_shape(name)): # dynamic
- dynamic = True
- context.set_input_shape(name, tuple(model.get_profile_shape(name, 0)[2]))
- if dtype == np.float16:
- fp16 = True
- else: # output
- output_names.append(name)
- shape = tuple(context.get_tensor_shape(name))
- else:
- name = model.get_binding_name(i)
- dtype = trt.nptype(model.get_binding_dtype(i))
- if model.binding_is_input(i):
- if -1 in tuple(model.get_binding_shape(i)): # dynamic
- dynamic = True
- context.set_binding_shape(i, tuple(model.get_profile_shape(0, i)[2]))
- if dtype == np.float16:
- fp16 = True
- else: # output
- output_names.append(name)
- shape = tuple(context.get_binding_shape(i))
- im = torch.from_numpy(np.empty(shape, dtype=dtype)).to(device)
- bindings[name] = Binding(name, dtype, shape, im, int(im.data_ptr()))
- binding_addrs = OrderedDict((n, d.ptr) for n, d in bindings.items())
- batch_size = bindings["images"].shape[0] # if dynamic, this is instead max batch size
- elif coreml: # CoreML
- LOGGER.info(f"Loading {w} for CoreML inference...")
- import coremltools as ct
- model = ct.models.MLModel(w)
- elif saved_model: # TF SavedModel
- LOGGER.info(f"Loading {w} for TensorFlow SavedModel inference...")
- import tensorflow as tf
- keras = False # assume TF1 saved_model
- model = tf.keras.models.load_model(w) if keras else tf.saved_model.load(w)
- elif pb: # GraphDef https://www.tensorflow.org/guide/migrate#a_graphpb_or_graphpbtxt
- LOGGER.info(f"Loading {w} for TensorFlow GraphDef inference...")
- import tensorflow as tf
- def wrap_frozen_graph(gd, inputs, outputs):
- """Wraps a TensorFlow GraphDef for inference, returning a pruned function."""
- x = tf.compat.v1.wrap_function(lambda: tf.compat.v1.import_graph_def(gd, name=""), []) # wrapped
- ge = x.graph.as_graph_element
- return x.prune(tf.nest.map_structure(ge, inputs), tf.nest.map_structure(ge, outputs))
- def gd_outputs(gd):
- """Generates a sorted list of graph outputs excluding NoOp nodes and inputs, formatted as '<name>:0'."""
- name_list, input_list = [], []
- for node in gd.node: # tensorflow.core.framework.node_def_pb2.NodeDef
- name_list.append(node.name)
- input_list.extend(node.input)
- return sorted(f"{x}:0" for x in list(set(name_list) - set(input_list)) if not x.startswith("NoOp"))
- gd = tf.Graph().as_graph_def() # TF GraphDef
- with open(w, "rb") as f:
- gd.ParseFromString(f.read())
- frozen_func = wrap_frozen_graph(gd, inputs="x:0", outputs=gd_outputs(gd))
- elif tflite or edgetpu: # https://www.tensorflow.org/lite/guide/python#install_tensorflow_lite_for_python
- try: # https://coral.ai/docs/edgetpu/tflite-python/#update-existing-tf-lite-code-for-the-edge-tpu
- from tflite_runtime.interpreter import Interpreter, load_delegate
- except ImportError:
- import tensorflow as tf
- Interpreter, load_delegate = (
- tf.lite.Interpreter,
- tf.lite.experimental.load_delegate,
- )
- if edgetpu: # TF Edge TPU https://coral.ai/software/#edgetpu-runtime
- LOGGER.info(f"Loading {w} for TensorFlow Lite Edge TPU inference...")
- delegate = {"Linux": "libedgetpu.so.1", "Darwin": "libedgetpu.1.dylib", "Windows": "edgetpu.dll"}[
- platform.system()
- ]
- interpreter = Interpreter(model_path=w, experimental_delegates=[load_delegate(delegate)])
- else: # TFLite
- LOGGER.info(f"Loading {w} for TensorFlow Lite inference...")
- interpreter = Interpreter(model_path=w) # load TFLite model
- interpreter.allocate_tensors() # allocate
- input_details = interpreter.get_input_details() # inputs
- output_details = interpreter.get_output_details() # outputs
- # load metadata
- with contextlib.suppress(zipfile.BadZipFile):
- with zipfile.ZipFile(w, "r") as model:
- meta_file = model.namelist()[0]
- meta = ast.literal_eval(model.read(meta_file).decode("utf-8"))
- stride, names = int(meta["stride"]), meta["names"]
- elif tfjs: # TF.js
- raise NotImplementedError("ERROR: YOLOv5 TF.js inference is not supported")
- # PaddlePaddle
- elif paddle:
- LOGGER.info(f"Loading {w} for PaddlePaddle inference...")
- check_requirements("paddlepaddle-gpu" if cuda else "paddlepaddle>=3.0.0")
- import paddle.inference as pdi
- w = Path(w)
- if w.is_dir():
- model_file = next(w.rglob("*.json"), None)
- params_file = next(w.rglob("*.pdiparams"), None)
- elif w.suffix == ".pdiparams":
- model_file = w.with_name("model.json")
- params_file = w
- else:
- raise ValueError(f"Invalid model path {w}. Provide model directory or a .pdiparams file.")
- if not (model_file and params_file and model_file.is_file() and params_file.is_file()):
- raise FileNotFoundError(f"Model files not found in {w}. Both .json and .pdiparams files are required.")
- config = pdi.Config(str(model_file), str(params_file))
- if cuda:
- config.enable_use_gpu(memory_pool_init_size_mb=2048, device_id=0)
- predictor = pdi.create_predictor(config)
- input_handle = predictor.get_input_handle(predictor.get_input_names()[0])
- output_names = predictor.get_output_names()
- elif triton: # NVIDIA Triton Inference Server
- LOGGER.info(f"Using {w} as Triton Inference Server...")
- check_requirements("tritonclient[all]")
- from utils.triton import TritonRemoteModel
- model = TritonRemoteModel(url=w)
- nhwc = model.runtime.startswith("tensorflow")
- else:
- raise NotImplementedError(f"ERROR: {w} is not a supported format")
- # class names
- if "names" not in locals():
- names = yaml_load(data)["names"] if data else {i: f"class{i}" for i in range(999)}
- if names[0] == "n01440764" and len(names) == 1000: # ImageNet
- names = yaml_load(ROOT / "data/ImageNet.yaml")["names"] # human-readable names
- self.__dict__.update(locals()) # assign all variables to self
- def forward(self, im, augment=False, visualize=False):
- """Performs YOLOv5 inference on input images with options for augmentation and visualization."""
- b, ch, h, w = im.shape # batch, channel, height, width
- if self.fp16 and im.dtype != torch.float16:
- im = im.half() # to FP16
- if self.nhwc:
- im = im.permute(0, 2, 3, 1) # torch BCHW to numpy BHWC shape(1,320,192,3)
- if self.pt: # PyTorch
- y = self.model(im, augment=augment, visualize=visualize) if augment or visualize else self.model(im)
- elif self.jit: # TorchScript
- y = self.model(im)
- elif self.dnn: # ONNX OpenCV DNN
- im = im.cpu().numpy() # torch to numpy
- self.net.setInput(im)
- y = self.net.forward()
- elif self.onnx: # ONNX Runtime
- im = im.cpu().numpy() # torch to numpy
- y = self.session.run(self.output_names, {self.session.get_inputs()[0].name: im})
- elif self.xml: # OpenVINO
- im = im.cpu().numpy() # FP32
- y = list(self.ov_compiled_model(im).values())
- elif self.engine: # TensorRT
- if self.dynamic and im.shape != self.bindings["images"].shape:
- i = self.model.get_binding_index("images")
- self.context.set_binding_shape(i, im.shape) # reshape if dynamic
- self.bindings["images"] = self.bindings["images"]._replace(shape=im.shape)
- for name in self.output_names:
- i = self.model.get_binding_index(name)
- self.bindings[name].data.resize_(tuple(self.context.get_binding_shape(i)))
- s = self.bindings["images"].shape
- assert im.shape == s, f"input size {im.shape} {'>' if self.dynamic else 'not equal to'} max model size {s}"
- self.binding_addrs["images"] = int(im.data_ptr())
- self.context.execute_v2(list(self.binding_addrs.values()))
- y = [self.bindings[x].data for x in sorted(self.output_names)]
- elif self.coreml: # CoreML
- im = im.cpu().numpy()
- im = Image.fromarray((im[0] * 255).astype("uint8"))
- # im = im.resize((192, 320), Image.BILINEAR)
- y = self.model.predict({"image": im}) # coordinates are xywh normalized
- if "confidence" in y:
- box = xywh2xyxy(y["coordinates"] * [[w, h, w, h]]) # xyxy pixels
- conf, cls = y["confidence"].max(1), y["confidence"].argmax(1).astype(np.float)
- y = np.concatenate((box, conf.reshape(-1, 1), cls.reshape(-1, 1)), 1)
- else:
- y = list(reversed(y.values())) # reversed for segmentation models (pred, proto)
- elif self.paddle: # PaddlePaddle
- im = im.cpu().numpy().astype(np.float32)
- self.input_handle.copy_from_cpu(im)
- self.predictor.run()
- y = [self.predictor.get_output_handle(x).copy_to_cpu() for x in self.output_names]
- elif self.triton: # NVIDIA Triton Inference Server
- y = self.model(im)
- else: # TensorFlow (SavedModel, GraphDef, Lite, Edge TPU)
- im = im.cpu().numpy()
- if self.saved_model: # SavedModel
- y = self.model(im, training=False) if self.keras else self.model(im)
- elif self.pb: # GraphDef
- y = self.frozen_func(x=self.tf.constant(im))
- else: # Lite or Edge TPU
- input = self.input_details[0]
- int8 = input["dtype"] == np.uint8 # is TFLite quantized uint8 model
- if int8:
- scale, zero_point = input["quantization"]
- im = (im / scale + zero_point).astype(np.uint8) # de-scale
- self.interpreter.set_tensor(input["index"], im)
- self.interpreter.invoke()
- y = []
- for output in self.output_details:
- x = self.interpreter.get_tensor(output["index"])
- if int8:
- scale, zero_point = output["quantization"]
- x = (x.astype(np.float32) - zero_point) * scale # re-scale
- y.append(x)
- if len(y) == 2 and len(y[1].shape) != 4:
- y = list(reversed(y))
- y = [x if isinstance(x, np.ndarray) else x.numpy() for x in y]
- y[0][..., :4] *= [w, h, w, h] # xywh normalized to pixels
- if isinstance(y, (list, tuple)):
- return self.from_numpy(y[0]) if len(y) == 1 else [self.from_numpy(x) for x in y]
- else:
- return self.from_numpy(y)
- def from_numpy(self, x):
- """Converts a NumPy array to a torch tensor, maintaining device compatibility."""
- return torch.from_numpy(x).to(self.device) if isinstance(x, np.ndarray) else x
- def warmup(self, imgsz=(1, 3, 640, 640)):
- """Performs a single inference warmup to initialize model weights, accepting an `imgsz` tuple for image size."""
- warmup_types = self.pt, self.jit, self.onnx, self.engine, self.saved_model, self.pb, self.triton
- if any(warmup_types) and (self.device.type != "cpu" or self.triton):
- im = torch.empty(*imgsz, dtype=torch.half if self.fp16 else torch.float, device=self.device) # input
- for _ in range(2 if self.jit else 1): #
- self.forward(im) # warmup
- @staticmethod
- def _model_type(p="path/to/model.pt"):
- """
- Determines model type from file path or URL, supporting various export formats.
- Example: path='path/to/model.onnx' -> type=onnx
- """
- # types = [pt, jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, paddle]
- from export import export_formats
- from utils.downloads import is_url
- sf = list(export_formats().Suffix) # export suffixes
- if not is_url(p, check=False):
- check_suffix(p, sf) # checks
- url = urlparse(p) # if url may be Triton inference server
- types = [s in Path(p).name for s in sf]
- types[8] &= not types[9] # tflite &= not edgetpu
- triton = not any(types) and all([any(s in url.scheme for s in ["http", "grpc"]), url.netloc])
- return types + [triton]
- @staticmethod
- def _load_metadata(f=Path("path/to/meta.yaml")):
- """Loads metadata from a YAML file, returning strides and names if the file exists, otherwise `None`."""
- if f.exists():
- d = yaml_load(f)
- return d["stride"], d["names"] # assign stride, names
- return None, None
- class AutoShape(nn.Module):
- """AutoShape class for robust YOLOv5 inference with preprocessing, NMS, and support for various input formats."""
- conf = 0.25 # NMS confidence threshold
- iou = 0.45 # NMS IoU threshold
- agnostic = False # NMS class-agnostic
- multi_label = False # NMS multiple labels per box
- classes = None # (optional list) filter by class, i.e. = [0, 15, 16] for COCO persons, cats and dogs
- max_det = 1000 # maximum number of detections per image
- amp = False # Automatic Mixed Precision (AMP) inference
- def __init__(self, model, verbose=True):
- """Initializes YOLOv5 model for inference, setting up attributes and preparing model for evaluation."""
- super().__init__()
- if verbose:
- LOGGER.info("Adding AutoShape... ")
- copy_attr(self, model, include=("yaml", "nc", "hyp", "names", "stride", "abc"), exclude=()) # copy attributes
- self.dmb = isinstance(model, DetectMultiBackend) # DetectMultiBackend() instance
- self.pt = not self.dmb or model.pt # PyTorch model
- self.model = model.eval()
- if self.pt:
- m = self.model.model.model[-1] if self.dmb else self.model.model[-1] # Detect()
- m.inplace = False # Detect.inplace=False for safe multithread inference
- m.export = True # do not output loss values
- def _apply(self, fn):
- """
- Applies to(), cpu(), cuda(), half() etc.
- to model tensors excluding parameters or registered buffers.
- """
- self = super()._apply(fn)
- if self.pt:
- m = self.model.model.model[-1] if self.dmb else self.model.model[-1] # Detect()
- m.stride = fn(m.stride)
- m.grid = list(map(fn, m.grid))
- if isinstance(m.anchor_grid, list):
- m.anchor_grid = list(map(fn, m.anchor_grid))
- return self
- @smart_inference_mode()
- def forward(self, ims, size=640, augment=False, profile=False):
- """
- Performs inference on inputs with optional augment & profiling.
- Supports various formats including file, URI, OpenCV, PIL, numpy, torch.
- """
- # For size(height=640, width=1280), RGB images example inputs are:
- # file: ims = 'data/images/zidane.jpg' # str or PosixPath
- # URI: = 'https://ultralytics.com/images/zidane.jpg'
- # OpenCV: = cv2.imread('image.jpg')[:,:,::-1] # HWC BGR to RGB x(640,1280,3)
- # PIL: = Image.open('image.jpg') or ImageGrab.grab() # HWC x(640,1280,3)
- # numpy: = np.zeros((640,1280,3)) # HWC
- # torch: = torch.zeros(16,3,320,640) # BCHW (scaled to size=640, 0-1 values)
- # multiple: = [Image.open('image1.jpg'), Image.open('image2.jpg'), ...] # list of images
- dt = (Profile(), Profile(), Profile())
- with dt[0]:
- if isinstance(size, int): # expand
- size = (size, size)
- p = next(self.model.parameters()) if self.pt else torch.empty(1, device=self.model.device) # param
- autocast = self.amp and (p.device.type != "cpu") # Automatic Mixed Precision (AMP) inference
- if isinstance(ims, torch.Tensor): # torch
- with amp.autocast(autocast):
- return self.model(ims.to(p.device).type_as(p), augment=augment) # inference
- # Pre-process
- n, ims = (len(ims), list(ims)) if isinstance(ims, (list, tuple)) else (1, [ims]) # number, list of images
- shape0, shape1, files = [], [], [] # image and inference shapes, filenames
- for i, im in enumerate(ims):
- f = f"image{i}" # filename
- if isinstance(im, (str, Path)): # filename or uri
- im, f = Image.open(requests.get(im, stream=True).raw if str(im).startswith("http") else im), im
- im = np.asarray(exif_transpose(im))
- elif isinstance(im, Image.Image): # PIL Image
- im, f = np.asarray(exif_transpose(im)), getattr(im, "filename", f) or f
- files.append(Path(f).with_suffix(".jpg").name)
- if im.shape[0] < 5: # image in CHW
- im = im.transpose((1, 2, 0)) # reverse dataloader .transpose(2, 0, 1)
- im = im[..., :3] if im.ndim == 3 else cv2.cvtColor(im, cv2.COLOR_GRAY2BGR) # enforce 3ch input
- s = im.shape[:2] # HWC
- shape0.append(s) # image shape
- g = max(size) / max(s) # gain
- shape1.append([int(y * g) for y in s])
- ims[i] = im if im.data.contiguous else np.ascontiguousarray(im) # update
- shape1 = [make_divisible(x, self.stride) for x in np.array(shape1).max(0)] # inf shape
- x = [letterbox(im, shape1, auto=False)[0] for im in ims] # pad
- x = np.ascontiguousarray(np.array(x).transpose((0, 3, 1, 2))) # stack and BHWC to BCHW
- x = torch.from_numpy(x).to(p.device).type_as(p) / 255 # uint8 to fp16/32
- with amp.autocast(autocast):
- # Inference
- with dt[1]:
- y = self.model(x, augment=augment) # forward
- # Post-process
- with dt[2]:
- y = non_max_suppression(
- y if self.dmb else y[0],
- self.conf,
- self.iou,
- self.classes,
- self.agnostic,
- self.multi_label,
- max_det=self.max_det,
- ) # NMS
- for i in range(n):
- scale_boxes(shape1, y[i][:, :4], shape0[i])
- return Detections(ims, y, files, dt, self.names, x.shape)
- class Detections:
- """Manages YOLOv5 detection results with methods for visualization, saving, cropping, and exporting detections."""
- def __init__(self, ims, pred, files, times=(0, 0, 0), names=None, shape=None):
- """Initializes the YOLOv5 Detections class with image info, predictions, filenames, timing and normalization."""
- super().__init__()
- d = pred[0].device # device
- gn = [torch.tensor([*(im.shape[i] for i in [1, 0, 1, 0]), 1, 1], device=d) for im in ims] # normalizations
- self.ims = ims # list of images as numpy arrays
- self.pred = pred # list of tensors pred[0] = (xyxy, conf, cls)
- self.names = names # class names
- self.files = files # image filenames
- self.times = times # profiling times
- self.xyxy = pred # xyxy pixels
- self.xywh = [xyxy2xywh(x) for x in pred] # xywh pixels
- self.xyxyn = [x / g for x, g in zip(self.xyxy, gn)] # xyxy normalized
- self.xywhn = [x / g for x, g in zip(self.xywh, gn)] # xywh normalized
- self.n = len(self.pred) # number of images (batch size)
- self.t = tuple(x.t / self.n * 1e3 for x in times) # timestamps (ms)
- self.s = tuple(shape) # inference BCHW shape
- def _run(self, pprint=False, show=False, save=False, crop=False, render=False, labels=True, save_dir=Path("")):
- """Executes model predictions, displaying and/or saving outputs with optional crops and labels."""
- s, crops = "", []
- for i, (im, pred) in enumerate(zip(self.ims, self.pred)):
- s += f"\nimage {i + 1}/{len(self.pred)}: {im.shape[0]}x{im.shape[1]} " # string
- if pred.shape[0]:
- for c in pred[:, -1].unique():
- n = (pred[:, -1] == c).sum() # detections per class
- s += f"{n} {self.names[int(c)]}{'s' * (n > 1)}, " # add to string
- s = s.rstrip(", ")
- if show or save or render or crop:
- annotator = Annotator(im, example=str(self.names))
- for *box, conf, cls in reversed(pred): # xyxy, confidence, class
- label = f"{self.names[int(cls)]} {conf:.2f}"
- if crop:
- file = save_dir / "crops" / self.names[int(cls)] / self.files[i] if save else None
- crops.append(
- {
- "box": box,
- "conf": conf,
- "cls": cls,
- "label": label,
- "im": save_one_box(box, im, file=file, save=save),
- }
- )
- else: # all others
- annotator.box_label(box, label if labels else "", color=colors(cls))
- im = annotator.im
- else:
- s += "(no detections)"
- im = Image.fromarray(im.astype(np.uint8)) if isinstance(im, np.ndarray) else im # from np
- if show:
- if is_jupyter():
- from IPython.display import display
- display(im)
- else:
- im.show(self.files[i])
- if save:
- f = self.files[i]
- im.save(save_dir / f) # save
- if i == self.n - 1:
- LOGGER.info(f"Saved {self.n} image{'s' * (self.n > 1)} to {colorstr('bold', save_dir)}")
- if render:
- self.ims[i] = np.asarray(im)
- if pprint:
- s = s.lstrip("\n")
- return f"{s}\nSpeed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {self.s}" % self.t
- if crop:
- if save:
- LOGGER.info(f"Saved results to {save_dir}\n")
- return crops
- @TryExcept("Showing images is not supported in this environment")
- def show(self, labels=True):
- """
- Displays detection results with optional labels.
- Usage: show(labels=True)
- """
- self._run(show=True, labels=labels) # show results
- def save(self, labels=True, save_dir="runs/detect/exp", exist_ok=False):
- """
- Saves detection results with optional labels to a specified directory.
- Usage: save(labels=True, save_dir='runs/detect/exp', exist_ok=False)
- """
- save_dir = increment_path(save_dir, exist_ok, mkdir=True) # increment save_dir
- self._run(save=True, labels=labels, save_dir=save_dir) # save results
- def crop(self, save=True, save_dir="runs/detect/exp", exist_ok=False):
- """
- Crops detection results, optionally saves them to a directory.
- Args: save (bool), save_dir (str), exist_ok (bool).
- """
- save_dir = increment_path(save_dir, exist_ok, mkdir=True) if save else None
- return self._run(crop=True, save=save, save_dir=save_dir) # crop results
- def render(self, labels=True):
- """Renders detection results with optional labels on images; args: labels (bool) indicating label inclusion."""
- self._run(render=True, labels=labels) # render results
- return self.ims
- def pandas(self):
- """
- Returns detections as pandas DataFrames for various box formats (xyxy, xyxyn, xywh, xywhn).
- Example: print(results.pandas().xyxy[0]).
- """
- new = copy(self) # return copy
- ca = "xmin", "ymin", "xmax", "ymax", "confidence", "class", "name" # xyxy columns
- cb = "xcenter", "ycenter", "width", "height", "confidence", "class", "name" # xywh columns
- for k, c in zip(["xyxy", "xyxyn", "xywh", "xywhn"], [ca, ca, cb, cb]):
- a = [[x[:5] + [int(x[5]), self.names[int(x[5])]] for x in x.tolist()] for x in getattr(self, k)] # update
- setattr(new, k, [pd.DataFrame(x, columns=c) for x in a])
- return new
- def tolist(self):
- """
- Converts a Detections object into a list of individual detection results for iteration.
- Example: for result in results.tolist():
- """
- r = range(self.n) # iterable
- return [
- Detections(
- [self.ims[i]],
- [self.pred[i]],
- [self.files[i]],
- self.times,
- self.names,
- self.s,
- )
- for i in r
- ]
- def print(self):
- """Logs the string representation of the current object's state via the LOGGER."""
- LOGGER.info(self.__str__())
- def __len__(self):
- """Returns the number of results stored, overrides the default len(results)."""
- return self.n
- def __str__(self):
- """Returns a string representation of the model's results, suitable for printing, overrides default
- print(results).
- """
- return self._run(pprint=True) # print results
- def __repr__(self):
- """Returns a string representation of the YOLOv5 object, including its class and formatted results."""
- return f"YOLOv5 {self.__class__} instance\n" + self.__str__()
- class Proto(nn.Module):
- """YOLOv5 mask Proto module for segmentation models, performing convolutions and upsampling on input tensors."""
- def __init__(self, c1, c_=256, c2=32):
- """Initializes YOLOv5 Proto module for segmentation with input, proto, and mask channels configuration."""
- super().__init__()
- self.cv1 = Conv(c1, c_, k=3)
- self.upsample = nn.Upsample(scale_factor=2, mode="nearest")
- self.cv2 = Conv(c_, c_, k=3)
- self.cv3 = Conv(c_, c2)
- def forward(self, x):
- """Performs a forward pass using convolutional layers and upsampling on input tensor `x`."""
- return self.cv3(self.cv2(self.upsample(self.cv1(x))))
- class Classify(nn.Module):
- """YOLOv5 classification head with convolution, pooling, and dropout layers for channel transformation."""
- def __init__(
- self, c1, c2, k=1, s=1, p=None, g=1, dropout_p=0.0
- ): # ch_in, ch_out, kernel, stride, padding, groups, dropout probability
- """Initializes YOLOv5 classification head with convolution, pooling, and dropout layers for input to output
- channel transformation.
- """
- super().__init__()
- c_ = 1280 # efficientnet_b0 size
- self.conv = Conv(c1, c_, k, s, autopad(k, p), g)
- self.pool = nn.AdaptiveAvgPool2d(1) # to x(b,c_,1,1)
- self.drop = nn.Dropout(p=dropout_p, inplace=True)
- self.linear = nn.Linear(c_, c2) # to x(b,c2)
- def forward(self, x):
- """Processes input through conv, pool, drop, and linear layers; supports list concatenation input."""
- if isinstance(x, list):
- x = torch.cat(x, 1)
- return self.linear(self.drop(self.pool(self.conv(x)).flatten(1)))
|