Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

Markdown_Table_Experiment_1.md 1.1 KB

You have to be logged in to leave a comment. Sign In

Model Training: Classic vs. PyTorch

Classic with PyTorch Tensor PyTorch Enhanced
import torch
t_c = [0.5, 14.0, 15.0, 28.0, 11.0, 8.0, 3.0, -4.0, 6.0, 13.0, 21.0]
t_u = [35.7, 55.9, 58.2, 81.9, 56.3, 48.9, 33.9, 21.8, 48.4, 60.4, 68.4]
t_c = torch.tensor(t_c)
t_u = torch.tensor(t_u)
def model(t_u, w, b):
 return w * t_u + b
def loss_fn(t_p, t_c):
 squared_diffs = (t_p - t_c)**2

 return squared_diffs.mean()
w = torch.ones(())
b = torch.zeros(())
print(w, b)

t_p = model(t_u, w, b)
params = torch.tensor([1.0, 0.0], requires_grad=True)

params.grad is None
loss = loss_fn(t_p, t_c) loss = loss_fn(model(t_u, *params), t_c)
loss.backward()

params.grad
elta = 0.1
learning_rate = 1e-2
Tip!

Press p or to see the previous file or, n or to see the next file

Comments

Loading...