Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

transductive_model.py 6.2 KB

You have to be logged in to leave a comment. Sign In
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
  1. from copy import deepcopy
  2. from typing import Dict, Optional, Tuple, Union
  3. from pl_bolts.optimizers.lr_scheduler import LinearWarmupCosineAnnealingLR
  4. import torch
  5. from torch import nn
  6. from torch.utils.tensorboard import SummaryWriter
  7. from torch_geometric.data import Data
  8. from torch_geometric import nn as tgnn
  9. from tqdm.auto import tqdm
  10. from gssl.loss import get_loss
  11. from gssl.tasks import evaluate_node_classification
  12. from gssl.utils import plot_vectors
  13. class Model:
  14. def __init__(
  15. self,
  16. feature_dim: int,
  17. emb_dim: int,
  18. loss_name: str,
  19. p_x: float,
  20. p_e: float,
  21. lr_base: float,
  22. total_epochs: int,
  23. warmup_epochs: int,
  24. ):
  25. self._device = torch.device(
  26. "cuda" if torch.cuda.is_available() else "cpu"
  27. )
  28. self._encoder = GCNEncoder(
  29. in_dim=feature_dim, out_dim=emb_dim
  30. ).to(self._device)
  31. self._loss_fn = get_loss(loss_name=loss_name)
  32. self._optimizer = torch.optim.AdamW(
  33. params=self._encoder.parameters(),
  34. lr=lr_base,
  35. weight_decay=1e-5,
  36. )
  37. self._scheduler = LinearWarmupCosineAnnealingLR(
  38. optimizer=self._optimizer,
  39. warmup_epochs=warmup_epochs,
  40. max_epochs=total_epochs,
  41. )
  42. self._p_x = p_x
  43. self._p_e = p_e
  44. self._total_epochs = total_epochs
  45. self._use_pytorch_eval_model = False
  46. def fit(
  47. self,
  48. data: Data,
  49. logger: Optional[SummaryWriter] = None,
  50. log_interval: Optional[int] = None,
  51. masks: Optional[Dict[str, torch.Tensor]] = None,
  52. ) -> dict:
  53. self._encoder.train()
  54. logs = {
  55. "log_epoch": [],
  56. "train_accuracies": [],
  57. "val_accuracies": [],
  58. "test_accuracies": [],
  59. "z": [],
  60. }
  61. data = data.to(self._device)
  62. for epoch in tqdm(iterable=range(self._total_epochs)):
  63. self._optimizer.zero_grad()
  64. (x_a, ei_a), (x_b, ei_b) = augment(
  65. data=data, p_x=self._p_x, p_e=self._p_e,
  66. )
  67. z_a = self._encoder(x=x_a, edge_index=ei_a)
  68. z_b = self._encoder(x=x_b, edge_index=ei_b)
  69. loss = self._loss_fn(z_a=z_a, z_b=z_b)
  70. loss.backward()
  71. # Save loss on every epoch
  72. if logger is not None:
  73. logger.add_scalar("Loss", loss.item(), epoch)
  74. # Log other metrics only in given interval
  75. if log_interval is not None and epoch % log_interval == 0:
  76. assert logger is not None
  77. z = self.predict(data=data)
  78. self._encoder.train() # Predict sets `eval()` mode
  79. logger.add_figure(
  80. "latent",
  81. plot_vectors(z, labels=data.y.cpu()),
  82. epoch
  83. )
  84. accs = evaluate_node_classification(
  85. z, data, masks=masks,
  86. use_pytorch=self._use_pytorch_eval_model,
  87. )
  88. logger.add_scalar("acc/train", accs["train"], epoch)
  89. logger.add_scalar("acc/val", accs["val"], epoch)
  90. logger.add_scalar("acc/test", accs["test"], epoch)
  91. logs["log_epoch"].append(epoch)
  92. logs["train_accuracies"].append(accs["train"])
  93. logs["val_accuracies"].append(accs["val"])
  94. logs["test_accuracies"].append(accs["test"])
  95. logs["z"].append(deepcopy(z))
  96. logger.add_scalar("norm", z.norm(dim=1).mean(), epoch)
  97. self._optimizer.step()
  98. self._scheduler.step()
  99. # Save all metrics at the end
  100. if logger is not None:
  101. z = self.predict(data=data)
  102. self._encoder.train() # Predict sets `eval()` mode
  103. accs = evaluate_node_classification(
  104. z, data, masks=masks,
  105. use_pytorch=self._use_pytorch_eval_model,
  106. )
  107. logger.add_figure(
  108. "latent",
  109. plot_vectors(z, labels=data.y.cpu()),
  110. self._total_epochs
  111. )
  112. logger.add_scalar("acc/train", accs["train"], self._total_epochs)
  113. logger.add_scalar("acc/val", accs["val"], self._total_epochs)
  114. logger.add_scalar("acc/test", accs["test"], self._total_epochs)
  115. logger.add_scalar("norm", z.norm(dim=1).mean(), self._total_epochs)
  116. logs["log_epoch"].append(self._total_epochs)
  117. logs["train_accuracies"].append(accs["train"])
  118. logs["val_accuracies"].append(accs["val"])
  119. logs["test_accuracies"].append(accs["test"])
  120. logs["z"].append(deepcopy(z))
  121. data = data.to("cpu")
  122. return logs
  123. def predict(self, data: Data) -> torch.Tensor:
  124. self._encoder.eval()
  125. with torch.no_grad():
  126. z = self._encoder(
  127. x=data.x.to(self._device),
  128. edge_index=data.edge_index.to(self._device),
  129. )
  130. return z.cpu()
  131. class GCNEncoder(nn.Module):
  132. def __init__(self, in_dim: int, out_dim: int):
  133. super().__init__()
  134. self._conv1 = tgnn.GCNConv(in_dim, 2 * out_dim)
  135. self._conv2 = tgnn.GCNConv(2 * out_dim, out_dim)
  136. self._bn1 = nn.BatchNorm1d(2 * out_dim, momentum=0.01) # same as `weight_decay = 0.99`
  137. self._act1 = nn.PReLU()
  138. def forward(self, x, edge_index):
  139. x = self._conv1(x, edge_index)
  140. x = self._bn1(x)
  141. x = self._act1(x)
  142. x = self._conv2(x, edge_index)
  143. return x
  144. def augment(data: Data, p_x: float, p_e: float):
  145. device = data.x.device
  146. x = data.x
  147. num_fts = x.size(-1)
  148. ei = data.edge_index
  149. num_edges = ei.size(-1)
  150. x_a = bernoulli_mask(size=(1, num_fts), prob=p_x).to(device) * x
  151. x_b = bernoulli_mask(size=(1, num_fts), prob=p_x).to(device) * x
  152. ei_a = ei[:, bernoulli_mask(size=num_edges, prob=p_e).to(device) == 1.]
  153. ei_b = ei[:, bernoulli_mask(size=num_edges, prob=p_e).to(device) == 1.]
  154. return (x_a, ei_a), (x_b, ei_b)
  155. def bernoulli_mask(size: Union[int, Tuple[int, ...]], prob: float):
  156. return torch.bernoulli((1 - prob) * torch.ones(size))
Tip!

Press p or to see the previous file or, n or to see the next file

Comments

Loading...