Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

train_finetune.py 29 KB

You have to be logged in to leave a comment. Sign In
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
  1. # load packages
  2. import random
  3. import yaml
  4. import time
  5. from munch import Munch
  6. import numpy as np
  7. import torch
  8. from torch import nn
  9. import torch.nn.functional as F
  10. import torchaudio
  11. import librosa
  12. import click
  13. import shutil
  14. import warnings
  15. warnings.simplefilter('ignore')
  16. from torch.utils.tensorboard import SummaryWriter
  17. from meldataset import build_dataloader
  18. from Utils.ASR.models import ASRCNN
  19. from Utils.JDC.model import JDCNet
  20. from Utils.PLBERT.util import load_plbert
  21. from models import *
  22. from losses import *
  23. from utils import *
  24. from Modules.slmadv import SLMAdversarialLoss
  25. from Modules.diffusion.sampler import DiffusionSampler, ADPM2Sampler, KarrasSchedule
  26. from optimizers import build_optimizer
  27. # simple fix for dataparallel that allows access to class attributes
  28. class MyDataParallel(torch.nn.DataParallel):
  29. def __getattr__(self, name):
  30. try:
  31. return super().__getattr__(name)
  32. except AttributeError:
  33. return getattr(self.module, name)
  34. import logging
  35. from logging import StreamHandler
  36. logger = logging.getLogger(__name__)
  37. logger.setLevel(logging.DEBUG)
  38. handler = StreamHandler()
  39. handler.setLevel(logging.DEBUG)
  40. logger.addHandler(handler)
  41. @click.command()
  42. @click.option('-p', '--config_path', default='Configs/config_ft.yml', type=str)
  43. def main(config_path):
  44. config = yaml.safe_load(open(config_path))
  45. log_dir = config['log_dir']
  46. if not osp.exists(log_dir): os.makedirs(log_dir, exist_ok=True)
  47. shutil.copy(config_path, osp.join(log_dir, osp.basename(config_path)))
  48. writer = SummaryWriter(log_dir + "/tensorboard")
  49. # write logs
  50. file_handler = logging.FileHandler(osp.join(log_dir, 'train.log'))
  51. file_handler.setLevel(logging.DEBUG)
  52. file_handler.setFormatter(logging.Formatter('%(levelname)s:%(asctime)s: %(message)s'))
  53. logger.addHandler(file_handler)
  54. batch_size = config.get('batch_size', 10)
  55. epochs = config.get('epochs', 200)
  56. save_freq = config.get('save_freq', 2)
  57. log_interval = config.get('log_interval', 10)
  58. saving_epoch = config.get('save_freq', 2)
  59. data_params = config.get('data_params', None)
  60. sr = config['preprocess_params'].get('sr', 24000)
  61. train_path = data_params['train_data']
  62. val_path = data_params['val_data']
  63. root_path = data_params['root_path']
  64. min_length = data_params['min_length']
  65. OOD_data = data_params['OOD_data']
  66. max_len = config.get('max_len', 200)
  67. loss_params = Munch(config['loss_params'])
  68. diff_epoch = loss_params.diff_epoch
  69. joint_epoch = loss_params.joint_epoch
  70. optimizer_params = Munch(config['optimizer_params'])
  71. train_list, val_list = get_data_path_list(train_path, val_path)
  72. device = 'cuda'
  73. train_dataloader = build_dataloader(train_list,
  74. root_path,
  75. OOD_data=OOD_data,
  76. min_length=min_length,
  77. batch_size=batch_size,
  78. num_workers=2,
  79. dataset_config={"sr": sr},
  80. device=device)
  81. val_dataloader = build_dataloader(val_list,
  82. root_path,
  83. OOD_data=OOD_data,
  84. min_length=min_length,
  85. batch_size=batch_size,
  86. validation=True,
  87. num_workers=0,
  88. device=device,
  89. dataset_config={"sr": sr})
  90. # load pretrained ASR model
  91. ASR_config = config.get('ASR_config', False)
  92. ASR_path = config.get('ASR_path', False)
  93. text_aligner = load_ASR_models(ASR_path, ASR_config)
  94. # load pretrained F0 model
  95. F0_path = config.get('F0_path', False)
  96. pitch_extractor = load_F0_models(F0_path)
  97. # load PL-BERT model
  98. BERT_path = config.get('PLBERT_dir', False)
  99. plbert = load_plbert(BERT_path)
  100. # build model
  101. model_params = recursive_munch(config['model_params'])
  102. multispeaker = model_params.multispeaker
  103. model = build_model(model_params, text_aligner, pitch_extractor, plbert)
  104. _ = [model[key].to(device) for key in model]
  105. # DP
  106. for key in model:
  107. if key != "mpd" and key != "msd" and key != "wd":
  108. model[key] = MyDataParallel(model[key])
  109. start_epoch = 0
  110. iters = 0
  111. load_pretrained = config.get('pretrained_model', '') != '' and config.get('second_stage_load_pretrained', False)
  112. if not load_pretrained:
  113. if config.get('first_stage_path', '') != '':
  114. first_stage_path = osp.join(log_dir, config.get('first_stage_path', 'first_stage.pth'))
  115. print('Loading the first stage model at %s ...' % first_stage_path)
  116. model, _, start_epoch, iters = load_checkpoint(model,
  117. None,
  118. first_stage_path,
  119. load_only_params=True,
  120. ignore_modules=['bert', 'bert_encoder', 'predictor',
  121. 'predictor_encoder', 'msd', 'mpd', 'wd',
  122. 'diffusion']) # keep starting epoch for tensorboard log
  123. # these epochs should be counted from the start epoch
  124. diff_epoch += start_epoch
  125. joint_epoch += start_epoch
  126. epochs += start_epoch
  127. model.predictor_encoder = copy.deepcopy(model.style_encoder)
  128. else:
  129. raise ValueError('You need to specify the path to the first stage model.')
  130. gl = GeneratorLoss(model.mpd, model.msd).to(device)
  131. dl = DiscriminatorLoss(model.mpd, model.msd).to(device)
  132. wl = WavLMLoss(model_params.slm.model,
  133. model.wd,
  134. sr,
  135. model_params.slm.sr).to(device)
  136. gl = MyDataParallel(gl)
  137. dl = MyDataParallel(dl)
  138. wl = MyDataParallel(wl)
  139. sampler = DiffusionSampler(
  140. model.diffusion.diffusion,
  141. sampler=ADPM2Sampler(),
  142. sigma_schedule=KarrasSchedule(sigma_min=0.0001, sigma_max=3.0, rho=9.0), # empirical parameters
  143. clamp=False
  144. )
  145. scheduler_params = {
  146. "max_lr": optimizer_params.lr,
  147. "pct_start": float(0),
  148. "epochs": epochs,
  149. "steps_per_epoch": len(train_dataloader),
  150. }
  151. scheduler_params_dict = {key: scheduler_params.copy() for key in model}
  152. scheduler_params_dict['bert']['max_lr'] = optimizer_params.bert_lr * 2
  153. scheduler_params_dict['decoder']['max_lr'] = optimizer_params.ft_lr * 2
  154. scheduler_params_dict['style_encoder']['max_lr'] = optimizer_params.ft_lr * 2
  155. optimizer = build_optimizer({key: model[key].parameters() for key in model},
  156. scheduler_params_dict=scheduler_params_dict, lr=optimizer_params.lr)
  157. # adjust BERT learning rate
  158. for g in optimizer.optimizers['bert'].param_groups:
  159. g['betas'] = (0.9, 0.99)
  160. g['lr'] = optimizer_params.bert_lr
  161. g['initial_lr'] = optimizer_params.bert_lr
  162. g['min_lr'] = 0
  163. g['weight_decay'] = 0.01
  164. # adjust acoustic module learning rate
  165. for module in ["decoder", "style_encoder"]:
  166. for g in optimizer.optimizers[module].param_groups:
  167. g['betas'] = (0.0, 0.99)
  168. g['lr'] = optimizer_params.ft_lr
  169. g['initial_lr'] = optimizer_params.ft_lr
  170. g['min_lr'] = 0
  171. g['weight_decay'] = 1e-4
  172. # load models if there is a model
  173. if load_pretrained:
  174. model, optimizer, start_epoch, iters = load_checkpoint(model, optimizer, config['pretrained_model'],
  175. load_only_params=config.get('load_only_params', True))
  176. n_down = model.text_aligner.n_down
  177. best_loss = float('inf') # best test loss
  178. loss_train_record = list([])
  179. loss_test_record = list([])
  180. iters = 0
  181. criterion = nn.L1Loss() # F0 loss (regression)
  182. torch.cuda.empty_cache()
  183. stft_loss = MultiResolutionSTFTLoss().to(device)
  184. print('BERT', optimizer.optimizers['bert'])
  185. print('decoder', optimizer.optimizers['decoder'])
  186. start_ds = False
  187. running_std = []
  188. slmadv_params = Munch(config['slmadv_params'])
  189. slmadv = SLMAdversarialLoss(model, wl, sampler,
  190. slmadv_params.min_len,
  191. slmadv_params.max_len,
  192. batch_percentage=slmadv_params.batch_percentage,
  193. skip_update=slmadv_params.iter,
  194. sig=slmadv_params.sig
  195. )
  196. for epoch in range(start_epoch, epochs):
  197. running_loss = 0
  198. start_time = time.time()
  199. _ = [model[key].eval() for key in model]
  200. model.text_aligner.train()
  201. model.text_encoder.train()
  202. model.predictor.train()
  203. model.bert_encoder.train()
  204. model.bert.train()
  205. model.msd.train()
  206. model.mpd.train()
  207. for i, batch in enumerate(train_dataloader):
  208. waves = batch[0]
  209. batch = [b.to(device) for b in batch[1:]]
  210. texts, input_lengths, ref_texts, ref_lengths, mels, mel_input_length, ref_mels = batch
  211. with torch.no_grad():
  212. mask = length_to_mask(mel_input_length // (2 ** n_down)).to(device)
  213. mel_mask = length_to_mask(mel_input_length).to(device)
  214. text_mask = length_to_mask(input_lengths).to(texts.device)
  215. # compute reference styles
  216. if multispeaker and epoch >= diff_epoch:
  217. ref_ss = model.style_encoder(ref_mels.unsqueeze(1))
  218. ref_sp = model.predictor_encoder(ref_mels.unsqueeze(1))
  219. ref = torch.cat([ref_ss, ref_sp], dim=1)
  220. try:
  221. ppgs, s2s_pred, s2s_attn = model.text_aligner(mels, mask, texts)
  222. s2s_attn = s2s_attn.transpose(-1, -2)
  223. s2s_attn = s2s_attn[..., 1:]
  224. s2s_attn = s2s_attn.transpose(-1, -2)
  225. except:
  226. continue
  227. mask_ST = mask_from_lens(s2s_attn, input_lengths, mel_input_length // (2 ** n_down))
  228. s2s_attn_mono = maximum_path(s2s_attn, mask_ST)
  229. # encode
  230. t_en = model.text_encoder(texts, input_lengths, text_mask)
  231. # 50% of chance of using monotonic version
  232. if bool(random.getrandbits(1)):
  233. asr = (t_en @ s2s_attn)
  234. else:
  235. asr = (t_en @ s2s_attn_mono)
  236. d_gt = s2s_attn_mono.sum(axis=-1).detach()
  237. # compute the style of the entire utterance
  238. # this operation cannot be done in batch because of the avgpool layer (may need to work on masked avgpool)
  239. ss = []
  240. gs = []
  241. for bib in range(len(mel_input_length)):
  242. mel_length = int(mel_input_length[bib].item())
  243. mel = mels[bib, :, :mel_input_length[bib]]
  244. s = model.predictor_encoder(mel.unsqueeze(0).unsqueeze(1))
  245. ss.append(s)
  246. s = model.style_encoder(mel.unsqueeze(0).unsqueeze(1))
  247. gs.append(s)
  248. s_dur = torch.stack(ss).squeeze() # global prosodic styles
  249. gs = torch.stack(gs).squeeze() # global acoustic styles
  250. s_trg = torch.cat([gs, s_dur], dim=-1).detach() # ground truth for denoiser
  251. bert_dur = model.bert(texts, attention_mask=(~text_mask).int())
  252. d_en = model.bert_encoder(bert_dur).transpose(-1, -2)
  253. # denoiser training
  254. if epoch >= diff_epoch:
  255. num_steps = np.random.randint(3, 5)
  256. if model_params.diffusion.dist.estimate_sigma_data:
  257. model.diffusion.module.diffusion.sigma_data = s_trg.std(
  258. axis=-1).mean().item() # batch-wise std estimation
  259. running_std.append(model.diffusion.module.diffusion.sigma_data)
  260. if multispeaker:
  261. s_preds = sampler(noise=torch.randn_like(s_trg).unsqueeze(1).to(device),
  262. embedding=bert_dur,
  263. embedding_scale=1,
  264. features=ref, # reference from the same speaker as the embedding
  265. embedding_mask_proba=0.1,
  266. num_steps=num_steps).squeeze(1)
  267. loss_diff = model.diffusion(s_trg.unsqueeze(1), embedding=bert_dur, features=ref).mean() # EDM loss
  268. loss_sty = F.l1_loss(s_preds, s_trg.detach()) # style reconstruction loss
  269. else:
  270. s_preds = sampler(noise=torch.randn_like(s_trg).unsqueeze(1).to(device),
  271. embedding=bert_dur,
  272. embedding_scale=1,
  273. embedding_mask_proba=0.1,
  274. num_steps=num_steps).squeeze(1)
  275. loss_diff = model.diffusion.module.diffusion(s_trg.unsqueeze(1),
  276. embedding=bert_dur).mean() # EDM loss
  277. loss_sty = F.l1_loss(s_preds, s_trg.detach()) # style reconstruction loss
  278. else:
  279. loss_sty = 0
  280. loss_diff = 0
  281. s_loss = 0
  282. d, p = model.predictor(d_en, s_dur,
  283. input_lengths,
  284. s2s_attn_mono,
  285. text_mask)
  286. mel_len_st = int(mel_input_length.min().item() / 2 - 1)
  287. mel_len = min(int(mel_input_length.min().item() / 2 - 1), max_len // 2)
  288. en = []
  289. gt = []
  290. p_en = []
  291. wav = []
  292. st = []
  293. for bib in range(len(mel_input_length)):
  294. mel_length = int(mel_input_length[bib].item() / 2)
  295. random_start = np.random.randint(0, mel_length - mel_len)
  296. en.append(asr[bib, :, random_start:random_start + mel_len])
  297. p_en.append(p[bib, :, random_start:random_start + mel_len])
  298. gt.append(mels[bib, :, (random_start * 2):((random_start + mel_len) * 2)])
  299. y = waves[bib][(random_start * 2) * 300:((random_start + mel_len) * 2) * 300]
  300. wav.append(torch.from_numpy(y).to(device))
  301. # style reference (better to be different from the GT)
  302. random_start = np.random.randint(0, mel_length - mel_len_st)
  303. st.append(mels[bib, :, (random_start * 2):((random_start + mel_len_st) * 2)])
  304. wav = torch.stack(wav).float().detach()
  305. en = torch.stack(en)
  306. p_en = torch.stack(p_en)
  307. gt = torch.stack(gt).detach()
  308. st = torch.stack(st).detach()
  309. if gt.size(-1) < 80:
  310. continue
  311. s = model.style_encoder(gt.unsqueeze(1))
  312. s_dur = model.predictor_encoder(gt.unsqueeze(1))
  313. with torch.no_grad():
  314. F0_real, _, F0 = model.pitch_extractor(gt.unsqueeze(1))
  315. F0 = F0.reshape(F0.shape[0], F0.shape[1] * 2, F0.shape[2], 1).squeeze()
  316. N_real = log_norm(gt.unsqueeze(1)).squeeze(1)
  317. y_rec_gt = wav.unsqueeze(1)
  318. y_rec_gt_pred = model.decoder(en, F0_real, N_real, s)
  319. wav = y_rec_gt
  320. F0_fake, N_fake = model.predictor.F0Ntrain(p_en, s_dur)
  321. y_rec = model.decoder(en, F0_fake, N_fake, s)
  322. loss_F0_rec = (F.smooth_l1_loss(F0_real, F0_fake)) / 10
  323. loss_norm_rec = F.smooth_l1_loss(N_real, N_fake)
  324. optimizer.zero_grad()
  325. d_loss = dl(wav.detach(), y_rec.detach()).mean()
  326. d_loss.backward()
  327. optimizer.step('msd')
  328. optimizer.step('mpd')
  329. # generator loss
  330. optimizer.zero_grad()
  331. loss_mel = stft_loss(y_rec, wav)
  332. loss_gen_all = gl(wav, y_rec).mean()
  333. loss_lm = wl(wav.detach().squeeze(), y_rec.squeeze()).mean()
  334. loss_ce = 0
  335. loss_dur = 0
  336. for _s2s_pred, _text_input, _text_length in zip(d, (d_gt), input_lengths):
  337. _s2s_pred = _s2s_pred[:_text_length, :]
  338. _text_input = _text_input[:_text_length].long()
  339. _s2s_trg = torch.zeros_like(_s2s_pred)
  340. for p in range(_s2s_trg.shape[0]):
  341. _s2s_trg[p, :_text_input[p]] = 1
  342. _dur_pred = torch.sigmoid(_s2s_pred).sum(axis=1)
  343. loss_dur += F.l1_loss(_dur_pred[1:_text_length - 1],
  344. _text_input[1:_text_length - 1])
  345. loss_ce += F.binary_cross_entropy_with_logits(_s2s_pred.flatten(), _s2s_trg.flatten())
  346. loss_ce /= texts.size(0)
  347. loss_dur /= texts.size(0)
  348. loss_s2s = 0
  349. for _s2s_pred, _text_input, _text_length in zip(s2s_pred, texts, input_lengths):
  350. loss_s2s += F.cross_entropy(_s2s_pred[:_text_length], _text_input[:_text_length])
  351. loss_s2s /= texts.size(0)
  352. loss_mono = F.l1_loss(s2s_attn, s2s_attn_mono) * 10
  353. g_loss = loss_params.lambda_mel * loss_mel + \
  354. loss_params.lambda_F0 * loss_F0_rec + \
  355. loss_params.lambda_ce * loss_ce + \
  356. loss_params.lambda_norm * loss_norm_rec + \
  357. loss_params.lambda_dur * loss_dur + \
  358. loss_params.lambda_gen * loss_gen_all + \
  359. loss_params.lambda_slm * loss_lm + \
  360. loss_params.lambda_sty * loss_sty + \
  361. loss_params.lambda_diff * loss_diff + \
  362. loss_params.lambda_mono * loss_mono + \
  363. loss_params.lambda_s2s * loss_s2s
  364. running_loss += loss_mel.item()
  365. g_loss.backward()
  366. if torch.isnan(g_loss):
  367. from IPython.core.debugger import set_trace
  368. set_trace()
  369. optimizer.step('bert_encoder')
  370. optimizer.step('bert')
  371. optimizer.step('predictor')
  372. optimizer.step('predictor_encoder')
  373. optimizer.step('style_encoder')
  374. optimizer.step('decoder')
  375. optimizer.step('text_encoder')
  376. optimizer.step('text_aligner')
  377. if epoch >= diff_epoch:
  378. optimizer.step('diffusion')
  379. d_loss_slm, loss_gen_lm = 0, 0
  380. if epoch >= joint_epoch:
  381. # randomly pick whether to use in-distribution text
  382. if np.random.rand() < 0.5:
  383. use_ind = True
  384. else:
  385. use_ind = False
  386. if use_ind:
  387. ref_lengths = input_lengths
  388. ref_texts = texts
  389. slm_out = slmadv(i,
  390. y_rec_gt,
  391. y_rec_gt_pred,
  392. waves,
  393. mel_input_length,
  394. ref_texts,
  395. ref_lengths, use_ind, s_trg.detach(), ref if multispeaker else None)
  396. if slm_out is not None:
  397. d_loss_slm, loss_gen_lm, y_pred = slm_out
  398. # SLM generator loss
  399. optimizer.zero_grad()
  400. loss_gen_lm.backward()
  401. # compute the gradient norm
  402. total_norm = {}
  403. for key in model.keys():
  404. total_norm[key] = 0
  405. parameters = [p for p in model[key].parameters() if p.grad is not None and p.requires_grad]
  406. for p in parameters:
  407. param_norm = p.grad.detach().data.norm(2)
  408. total_norm[key] += param_norm.item() ** 2
  409. total_norm[key] = total_norm[key] ** 0.5
  410. # gradient scaling
  411. if total_norm['predictor'] > slmadv_params.thresh:
  412. for key in model.keys():
  413. for p in model[key].parameters():
  414. if p.grad is not None:
  415. p.grad *= (1 / total_norm['predictor'])
  416. for p in model.predictor.duration_proj.parameters():
  417. if p.grad is not None:
  418. p.grad *= slmadv_params.scale
  419. for p in model.predictor.lstm.parameters():
  420. if p.grad is not None:
  421. p.grad *= slmadv_params.scale
  422. for p in model.diffusion.parameters():
  423. if p.grad is not None:
  424. p.grad *= slmadv_params.scale
  425. optimizer.step('bert_encoder')
  426. optimizer.step('bert')
  427. optimizer.step('predictor')
  428. optimizer.step('diffusion')
  429. # SLM discriminator loss
  430. if d_loss_slm != 0:
  431. optimizer.zero_grad()
  432. d_loss_slm.backward(retain_graph=True)
  433. optimizer.step('wd')
  434. iters = iters + 1
  435. if (i + 1) % log_interval == 0:
  436. logger.info(
  437. 'Epoch [%d/%d], Step [%d/%d], Loss: %.5f, Disc Loss: %.5f, Dur Loss: %.5f, CE Loss: %.5f, Norm Loss: %.5f, F0 Loss: %.5f, LM Loss: %.5f, Gen Loss: %.5f, Sty Loss: %.5f, Diff Loss: %.5f, DiscLM Loss: %.5f, GenLM Loss: %.5f, SLoss: %.5f, S2S Loss: %.5f, Mono Loss: %.5f'
  438. % (epoch + 1, epochs, i + 1, len(train_list) // batch_size, running_loss / log_interval, d_loss,
  439. loss_dur, loss_ce, loss_norm_rec, loss_F0_rec, loss_lm, loss_gen_all, loss_sty, loss_diff,
  440. d_loss_slm, loss_gen_lm, s_loss, loss_s2s, loss_mono))
  441. writer.add_scalar('train/mel_loss', running_loss / log_interval, iters)
  442. writer.add_scalar('train/gen_loss', loss_gen_all, iters)
  443. writer.add_scalar('train/d_loss', d_loss, iters)
  444. writer.add_scalar('train/ce_loss', loss_ce, iters)
  445. writer.add_scalar('train/dur_loss', loss_dur, iters)
  446. writer.add_scalar('train/slm_loss', loss_lm, iters)
  447. writer.add_scalar('train/norm_loss', loss_norm_rec, iters)
  448. writer.add_scalar('train/F0_loss', loss_F0_rec, iters)
  449. writer.add_scalar('train/sty_loss', loss_sty, iters)
  450. writer.add_scalar('train/diff_loss', loss_diff, iters)
  451. writer.add_scalar('train/d_loss_slm', d_loss_slm, iters)
  452. writer.add_scalar('train/gen_loss_slm', loss_gen_lm, iters)
  453. running_loss = 0
  454. print('Time elasped:', time.time() - start_time)
  455. loss_test = 0
  456. loss_align = 0
  457. loss_f = 0
  458. _ = [model[key].eval() for key in model]
  459. with torch.no_grad():
  460. iters_test = 0
  461. for batch_idx, batch in enumerate(val_dataloader):
  462. optimizer.zero_grad()
  463. try:
  464. waves = batch[0]
  465. batch = [b.to(device) for b in batch[1:]]
  466. texts, input_lengths, ref_texts, ref_lengths, mels, mel_input_length, ref_mels = batch
  467. with torch.no_grad():
  468. mask = length_to_mask(mel_input_length // (2 ** n_down)).to('cuda')
  469. text_mask = length_to_mask(input_lengths).to(texts.device)
  470. _, _, s2s_attn = model.text_aligner(mels, mask, texts)
  471. s2s_attn = s2s_attn.transpose(-1, -2)
  472. s2s_attn = s2s_attn[..., 1:]
  473. s2s_attn = s2s_attn.transpose(-1, -2)
  474. mask_ST = mask_from_lens(s2s_attn, input_lengths, mel_input_length // (2 ** n_down))
  475. s2s_attn_mono = maximum_path(s2s_attn, mask_ST)
  476. # encode
  477. t_en = model.text_encoder(texts, input_lengths, text_mask)
  478. asr = (t_en @ s2s_attn_mono)
  479. d_gt = s2s_attn_mono.sum(axis=-1).detach()
  480. ss = []
  481. gs = []
  482. for bib in range(len(mel_input_length)):
  483. mel_length = int(mel_input_length[bib].item())
  484. mel = mels[bib, :, :mel_input_length[bib]]
  485. s = model.predictor_encoder(mel.unsqueeze(0).unsqueeze(1))
  486. ss.append(s)
  487. s = model.style_encoder(mel.unsqueeze(0).unsqueeze(1))
  488. gs.append(s)
  489. s = torch.stack(ss).squeeze()
  490. gs = torch.stack(gs).squeeze()
  491. s_trg = torch.cat([s, gs], dim=-1).detach()
  492. bert_dur = model.bert(texts, attention_mask=(~text_mask).int())
  493. d_en = model.bert_encoder(bert_dur).transpose(-1, -2)
  494. d, p = model.predictor(d_en, s,
  495. input_lengths,
  496. s2s_attn_mono,
  497. text_mask)
  498. # get clips
  499. mel_len = int(mel_input_length.min().item() / 2 - 1)
  500. en = []
  501. gt = []
  502. p_en = []
  503. wav = []
  504. for bib in range(len(mel_input_length)):
  505. mel_length = int(mel_input_length[bib].item() / 2)
  506. random_start = np.random.randint(0, mel_length - mel_len)
  507. en.append(asr[bib, :, random_start:random_start + mel_len])
  508. p_en.append(p[bib, :, random_start:random_start + mel_len])
  509. gt.append(mels[bib, :, (random_start * 2):((random_start + mel_len) * 2)])
  510. y = waves[bib][(random_start * 2) * 300:((random_start + mel_len) * 2) * 300]
  511. wav.append(torch.from_numpy(y).to(device))
  512. wav = torch.stack(wav).float().detach()
  513. en = torch.stack(en)
  514. p_en = torch.stack(p_en)
  515. gt = torch.stack(gt).detach()
  516. s = model.predictor_encoder(gt.unsqueeze(1))
  517. F0_fake, N_fake = model.predictor.F0Ntrain(p_en, s)
  518. loss_dur = 0
  519. for _s2s_pred, _text_input, _text_length in zip(d, (d_gt), input_lengths):
  520. _s2s_pred = _s2s_pred[:_text_length, :]
  521. _text_input = _text_input[:_text_length].long()
  522. _s2s_trg = torch.zeros_like(_s2s_pred)
  523. for bib in range(_s2s_trg.shape[0]):
  524. _s2s_trg[bib, :_text_input[bib]] = 1
  525. _dur_pred = torch.sigmoid(_s2s_pred).sum(axis=1)
  526. loss_dur += F.l1_loss(_dur_pred[1:_text_length - 1],
  527. _text_input[1:_text_length - 1])
  528. loss_dur /= texts.size(0)
  529. s = model.style_encoder(gt.unsqueeze(1))
  530. y_rec = model.decoder(en, F0_fake, N_fake, s)
  531. loss_mel = stft_loss(y_rec.squeeze(), wav.detach())
  532. F0_real, _, F0 = model.pitch_extractor(gt.unsqueeze(1))
  533. loss_F0 = F.l1_loss(F0_real, F0_fake) / 10
  534. loss_test += (loss_mel).mean()
  535. loss_align += (loss_dur).mean()
  536. loss_f += (loss_F0).mean()
  537. iters_test += 1
  538. except:
  539. continue
  540. print('Epochs:', epoch + 1)
  541. logger.info('Validation loss: %.3f, Dur loss: %.3f, F0 loss: %.3f' % (
  542. loss_test / iters_test, loss_align / iters_test, loss_f / iters_test) + '\n\n\n')
  543. print('\n\n\n')
  544. writer.add_scalar('eval/mel_loss', loss_test / iters_test, epoch + 1)
  545. writer.add_scalar('eval/dur_loss', loss_test / iters_test, epoch + 1)
  546. writer.add_scalar('eval/F0_loss', loss_f / iters_test, epoch + 1)
  547. if (epoch + 1) % save_freq == 0:
  548. if (loss_test / iters_test) < best_loss:
  549. best_loss = loss_test / iters_test
  550. print('Saving..')
  551. state = {
  552. 'net': {key: model[key].state_dict() for key in model},
  553. 'optimizer': optimizer.state_dict(),
  554. 'iters': iters,
  555. 'val_loss': loss_test / iters_test,
  556. 'epoch': epoch,
  557. }
  558. save_path = osp.join(log_dir, 'epoch_2nd_%05d.pth' % epoch)
  559. torch.save(state, save_path)
  560. # if estimate sigma, save the estimated simga
  561. if model_params.diffusion.dist.estimate_sigma_data:
  562. config['model_params']['diffusion']['dist']['sigma_data'] = float(np.mean(running_std))
  563. with open(osp.join(log_dir, osp.basename(config_path)), 'w') as outfile:
  564. yaml.dump(config, outfile, default_flow_style=True)
  565. if __name__ == "__main__":
  566. main()
Tip!

Press p or to see the previous file or, n or to see the next file

Comments

Loading...