Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

inference.py 1018 B

You have to be logged in to leave a comment. Sign In
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
  1. import tensorflow as tf
  2. import numpy as np
  3. class TSPredictor:
  4. def __init__(self, model_path,vectorize_layer_path):
  5. self.model_path = model_path
  6. self.model = tf.keras.models.load_model(self.model_path)
  7. self.vectorize_layer_path = vectorize_layer_path
  8. self.loaded_vectorize_layer_model = tf.keras.models.load_model(self.vectorize_layer_path)
  9. def preprocess(self, raw_text):
  10. # Uses the trained vectorization layer to preprocess the text
  11. loaded_vectorize_layer = self.loaded_vectorize_layer_model.layers[-1]
  12. return loaded_vectorize_layer(raw_text)[np.newaxis, :] # Creates a new axis for batch size
  13. def infer(self, text):
  14. pred = self.model.predict(text)
  15. return {'output':pred.tolist()}
  16. if __name__ == "__main__":
  17. text = "text"
  18. file_path = "./models/1/vectorize_layer"
  19. model_path = "./models/1/TSModel.hdf5"
  20. predictor = TSPredictor(model_path,file_path)
  21. print(predictor.infer(predictor.preprocess(text)))
Tip!

Press p or to see the previous file or, n or to see the next file

Comments

Loading...