1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
|
- <!DOCTYPE html>
- <html class="writer-html5" lang="en" >
- <head>
- <meta charset="utf-8" />
- <meta name="viewport" content="width=device-width, initial-scale=1.0" />
- <title>super_gradients.training.utils.segmentation_utils — SuperGradients 1.0 documentation</title>
- <link rel="stylesheet" href="../../../../_static/pygments.css" type="text/css" />
- <link rel="stylesheet" href="../../../../_static/css/theme.css" type="text/css" />
- <link rel="stylesheet" href="../../../../_static/graphviz.css" type="text/css" />
- <!--[if lt IE 9]>
- <script src="../../../../_static/js/html5shiv.min.js"></script>
- <![endif]-->
-
- <script data-url_root="../../../../" id="documentation_options" src="../../../../_static/documentation_options.js"></script>
- <script src="../../../../_static/jquery.js"></script>
- <script src="../../../../_static/underscore.js"></script>
- <script src="../../../../_static/doctools.js"></script>
- <script src="../../../../_static/js/theme.js"></script>
- <link rel="index" title="Index" href="../../../../genindex.html" />
- <link rel="search" title="Search" href="../../../../search.html" />
- </head>
- <body class="wy-body-for-nav">
- <div class="wy-grid-for-nav">
- <nav data-toggle="wy-nav-shift" class="wy-nav-side">
- <div class="wy-side-scroll">
- <div class="wy-side-nav-search" >
- <a href="../../../../index.html" class="icon icon-home"> SuperGradients
- </a>
- <div role="search">
- <form id="rtd-search-form" class="wy-form" action="../../../../search.html" method="get">
- <input type="text" name="q" placeholder="Search docs" />
- <input type="hidden" name="check_keywords" value="yes" />
- <input type="hidden" name="area" value="default" />
- </form>
- </div>
- </div><div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="Navigation menu">
- <p class="caption"><span class="caption-text">Welcome To SuperGradients</span></p>
- <ul>
- <li class="toctree-l1"><a class="reference internal" href="../../../../welcome.html">SuperGradients</a></li>
- </ul>
- <p class="caption"><span class="caption-text">Technical Documentation</span></p>
- <ul>
- <li class="toctree-l1"><a class="reference internal" href="../../../../super_gradients.common.html">Common package</a></li>
- <li class="toctree-l1"><a class="reference internal" href="../../../../super_gradients.training.html">Training package</a></li>
- </ul>
- <p class="caption"><span class="caption-text">User Guide</span></p>
- <ul>
- <li class="toctree-l1"><a class="reference internal" href="../../../../user_guide.html">What is SuperGradients?</a></li>
- <li class="toctree-l1"><a class="reference internal" href="../../../../user_guide.html#introducing-the-supergradients-library">Introducing the SuperGradients library</a></li>
- <li class="toctree-l1"><a class="reference internal" href="../../../../user_guide.html#installation">Installation</a></li>
- <li class="toctree-l1"><a class="reference internal" href="../../../../user_guide.html#integrating-your-training-code-complete-walkthrough">Integrating Your Training Code - Complete Walkthrough</a></li>
- <li class="toctree-l1"><a class="reference internal" href="../../../../user_guide.html#training-parameters">Training Parameters</a></li>
- <li class="toctree-l1"><a class="reference internal" href="../../../../user_guide.html#logs-and-checkpoints">Logs and Checkpoints</a></li>
- <li class="toctree-l1"><a class="reference internal" href="../../../../user_guide.html#dataset-parameters">Dataset Parameters</a></li>
- <li class="toctree-l1"><a class="reference internal" href="../../../../user_guide.html#network-architectures">Network Architectures</a></li>
- <li class="toctree-l1"><a class="reference internal" href="../../../../user_guide.html#pretrained-models">Pretrained Models</a></li>
- <li class="toctree-l1"><a class="reference internal" href="../../../../user_guide.html#how-to-reproduce-our-training-recipes">How To Reproduce Our Training Recipes</a></li>
- <li class="toctree-l1"><a class="reference internal" href="../../../../user_guide.html#supergradients-faq">SuperGradients FAQ</a></li>
- </ul>
- </div>
- </div>
- </nav>
- <section data-toggle="wy-nav-shift" class="wy-nav-content-wrap"><nav class="wy-nav-top" aria-label="Mobile navigation menu" >
- <i data-toggle="wy-nav-top" class="fa fa-bars"></i>
- <a href="../../../../index.html">SuperGradients</a>
- </nav>
- <div class="wy-nav-content">
- <div class="rst-content">
- <div role="navigation" aria-label="Page navigation">
- <ul class="wy-breadcrumbs">
- <li><a href="../../../../index.html" class="icon icon-home"></a> »</li>
- <li><a href="../../../index.html">Module code</a> »</li>
- <li>super_gradients.training.utils.segmentation_utils</li>
- <li class="wy-breadcrumbs-aside">
- </li>
- </ul>
- <hr/>
- </div>
- <div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
- <div itemprop="articleBody">
-
- <h1>Source code for super_gradients.training.utils.segmentation_utils</h1><div class="highlight"><pre>
- <span></span><span class="kn">import</span> <span class="nn">random</span>
- <span class="kn">from</span> <span class="nn">PIL</span> <span class="kn">import</span> <span class="n">Image</span><span class="p">,</span> <span class="n">ImageOps</span><span class="p">,</span> <span class="n">ImageFilter</span>
- <span class="kn">import</span> <span class="nn">collections</span>
- <span class="kn">from</span> <span class="nn">typing</span> <span class="kn">import</span> <span class="n">Optional</span><span class="p">,</span> <span class="n">Union</span><span class="p">,</span> <span class="n">Tuple</span><span class="p">,</span> <span class="n">List</span><span class="p">,</span> <span class="n">Sequence</span>
- <span class="kn">import</span> <span class="nn">math</span>
- <span class="kn">import</span> <span class="nn">torchvision.transforms</span> <span class="k">as</span> <span class="nn">transforms</span>
- <span class="kn">import</span> <span class="nn">torch</span>
- <span class="kn">import</span> <span class="nn">torch.nn.functional</span> <span class="k">as</span> <span class="nn">F</span>
- <span class="c1"># FIXME: REFACTOR AUGMENTATIONS, CONSIDER USING A MORE EFFICIENT LIBRARIES SUCH AS, IMGAUG, DALI ETC.</span>
- <span class="n">image_resample</span> <span class="o">=</span> <span class="n">Image</span><span class="o">.</span><span class="n">BILINEAR</span>
- <span class="n">mask_resample</span> <span class="o">=</span> <span class="n">Image</span><span class="o">.</span><span class="n">NEAREST</span>
- <div class="viewcode-block" id="SegmentationTransform"><a class="viewcode-back" href="../../../../super_gradients.training.utils.html#super_gradients.training.utils.segmentation_utils.SegmentationTransform">[docs]</a><span class="k">class</span> <span class="nc">SegmentationTransform</span><span class="p">:</span>
- <span class="k">def</span> <span class="fm">__call__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
- <span class="k">raise</span> <span class="ne">NotImplementedError</span>
- <span class="k">def</span> <span class="fm">__repr__</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
- <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="vm">__class__</span><span class="o">.</span><span class="vm">__name__</span> <span class="o">+</span> <span class="nb">str</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="vm">__dict__</span><span class="p">)</span><span class="o">.</span><span class="n">replace</span><span class="p">(</span><span class="s1">'{'</span><span class="p">,</span> <span class="s1">'('</span><span class="p">)</span><span class="o">.</span><span class="n">replace</span><span class="p">(</span><span class="s1">'}'</span><span class="p">,</span> <span class="s1">')'</span><span class="p">)</span></div>
- <div class="viewcode-block" id="RandomFlip"><a class="viewcode-back" href="../../../../super_gradients.training.utils.html#super_gradients.training.utils.segmentation_utils.RandomFlip">[docs]</a><span class="k">class</span> <span class="nc">RandomFlip</span><span class="p">(</span><span class="n">SegmentationTransform</span><span class="p">):</span>
- <span class="sd">"""</span>
- <span class="sd"> Randomly flips the image and mask (synchronously) with probability 'prob'.</span>
- <span class="sd"> """</span>
- <span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">prob</span><span class="p">:</span> <span class="nb">float</span> <span class="o">=</span> <span class="mf">0.5</span><span class="p">):</span>
- <span class="k">assert</span> <span class="mf">0.</span> <span class="o"><=</span> <span class="n">prob</span> <span class="o"><=</span> <span class="mf">1.</span><span class="p">,</span> <span class="sa">f</span><span class="s2">"Probability value must be between 0 and 1, found </span><span class="si">{</span><span class="n">prob</span><span class="si">}</span><span class="s2">"</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">prob</span> <span class="o">=</span> <span class="n">prob</span>
- <span class="k">def</span> <span class="fm">__call__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">sample</span><span class="p">:</span> <span class="nb">dict</span><span class="p">):</span>
- <span class="n">image</span> <span class="o">=</span> <span class="n">sample</span><span class="p">[</span><span class="s2">"image"</span><span class="p">]</span>
- <span class="n">mask</span> <span class="o">=</span> <span class="n">sample</span><span class="p">[</span><span class="s2">"mask"</span><span class="p">]</span>
- <span class="k">if</span> <span class="n">random</span><span class="o">.</span><span class="n">random</span><span class="p">()</span> <span class="o"><</span> <span class="bp">self</span><span class="o">.</span><span class="n">prob</span><span class="p">:</span>
- <span class="n">image</span> <span class="o">=</span> <span class="n">image</span><span class="o">.</span><span class="n">transpose</span><span class="p">(</span><span class="n">Image</span><span class="o">.</span><span class="n">FLIP_LEFT_RIGHT</span><span class="p">)</span>
- <span class="n">mask</span> <span class="o">=</span> <span class="n">mask</span><span class="o">.</span><span class="n">transpose</span><span class="p">(</span><span class="n">Image</span><span class="o">.</span><span class="n">FLIP_LEFT_RIGHT</span><span class="p">)</span>
- <span class="n">sample</span><span class="p">[</span><span class="s2">"image"</span><span class="p">]</span> <span class="o">=</span> <span class="n">image</span>
- <span class="n">sample</span><span class="p">[</span><span class="s2">"mask"</span><span class="p">]</span> <span class="o">=</span> <span class="n">mask</span>
- <span class="k">return</span> <span class="n">sample</span></div>
- <div class="viewcode-block" id="Rescale"><a class="viewcode-back" href="../../../../super_gradients.training.utils.html#super_gradients.training.utils.segmentation_utils.Rescale">[docs]</a><span class="k">class</span> <span class="nc">Rescale</span><span class="p">(</span><span class="n">SegmentationTransform</span><span class="p">):</span>
- <span class="sd">"""</span>
- <span class="sd"> Rescales the image and mask (synchronously) while preserving aspect ratio.</span>
- <span class="sd"> The rescaling can be done according to scale_factor, short_size or long_size.</span>
- <span class="sd"> If more than one argument is given, the rescaling mode is determined by this order: scale_factor, then short_size,</span>
- <span class="sd"> then long_size.</span>
- <span class="sd"> Args:</span>
- <span class="sd"> scale_factor: rescaling is done by multiplying input size by scale_factor:</span>
- <span class="sd"> out_size = (scale_factor * w, scale_factor * h)</span>
- <span class="sd"> short_size: rescaling is done by determining the scale factor by the ratio short_size / min(h, w).</span>
- <span class="sd"> long_size: rescaling is done by determining the scale factor by the ratio long_size / max(h, w).</span>
- <span class="sd"> """</span>
- <span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span>
- <span class="n">scale_factor</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">float</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
- <span class="n">short_size</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">int</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
- <span class="n">long_size</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">int</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">):</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">scale_factor</span> <span class="o">=</span> <span class="n">scale_factor</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">short_size</span> <span class="o">=</span> <span class="n">short_size</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">long_size</span> <span class="o">=</span> <span class="n">long_size</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">check_valid_arguments</span><span class="p">()</span>
- <span class="k">def</span> <span class="fm">__call__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">sample</span><span class="p">:</span> <span class="nb">dict</span><span class="p">):</span>
- <span class="n">image</span> <span class="o">=</span> <span class="n">sample</span><span class="p">[</span><span class="s2">"image"</span><span class="p">]</span>
- <span class="n">mask</span> <span class="o">=</span> <span class="n">sample</span><span class="p">[</span><span class="s2">"mask"</span><span class="p">]</span>
- <span class="n">w</span><span class="p">,</span> <span class="n">h</span> <span class="o">=</span> <span class="n">image</span><span class="o">.</span><span class="n">size</span>
- <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">scale_factor</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
- <span class="n">scale</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">scale_factor</span>
- <span class="k">elif</span> <span class="bp">self</span><span class="o">.</span><span class="n">short_size</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
- <span class="n">short_size</span> <span class="o">=</span> <span class="nb">min</span><span class="p">(</span><span class="n">w</span><span class="p">,</span> <span class="n">h</span><span class="p">)</span>
- <span class="n">scale</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">short_size</span> <span class="o">/</span> <span class="n">short_size</span>
- <span class="k">else</span><span class="p">:</span>
- <span class="n">long_size</span> <span class="o">=</span> <span class="nb">max</span><span class="p">(</span><span class="n">w</span><span class="p">,</span> <span class="n">h</span><span class="p">)</span>
- <span class="n">scale</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">long_size</span> <span class="o">/</span> <span class="n">long_size</span>
- <span class="n">out_size</span> <span class="o">=</span> <span class="nb">int</span><span class="p">(</span><span class="n">scale</span> <span class="o">*</span> <span class="n">w</span><span class="p">),</span> <span class="nb">int</span><span class="p">(</span><span class="n">scale</span> <span class="o">*</span> <span class="n">h</span><span class="p">)</span>
- <span class="n">image</span> <span class="o">=</span> <span class="n">image</span><span class="o">.</span><span class="n">resize</span><span class="p">(</span><span class="n">out_size</span><span class="p">,</span> <span class="n">image_resample</span><span class="p">)</span>
- <span class="n">mask</span> <span class="o">=</span> <span class="n">mask</span><span class="o">.</span><span class="n">resize</span><span class="p">(</span><span class="n">out_size</span><span class="p">,</span> <span class="n">mask_resample</span><span class="p">)</span>
- <span class="n">sample</span><span class="p">[</span><span class="s2">"image"</span><span class="p">]</span> <span class="o">=</span> <span class="n">image</span>
- <span class="n">sample</span><span class="p">[</span><span class="s2">"mask"</span><span class="p">]</span> <span class="o">=</span> <span class="n">mask</span>
- <span class="k">return</span> <span class="n">sample</span>
- <div class="viewcode-block" id="Rescale.check_valid_arguments"><a class="viewcode-back" href="../../../../super_gradients.training.utils.html#super_gradients.training.utils.segmentation_utils.Rescale.check_valid_arguments">[docs]</a> <span class="k">def</span> <span class="nf">check_valid_arguments</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
- <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">scale_factor</span> <span class="ow">is</span> <span class="kc">None</span> <span class="ow">and</span> <span class="bp">self</span><span class="o">.</span><span class="n">short_size</span> <span class="ow">is</span> <span class="kc">None</span> <span class="ow">and</span> <span class="bp">self</span><span class="o">.</span><span class="n">long_size</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
- <span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span><span class="s2">"Must assign one rescale argument: scale_factor, short_size or long_size"</span><span class="p">)</span>
- <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">scale_factor</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span> <span class="ow">and</span> <span class="bp">self</span><span class="o">.</span><span class="n">scale_factor</span> <span class="o"><=</span> <span class="mi">0</span><span class="p">:</span>
- <span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span><span class="sa">f</span><span class="s2">"Scale factor must be a positive number, found: </span><span class="si">{</span><span class="bp">self</span><span class="o">.</span><span class="n">scale_factor</span><span class="si">}</span><span class="s2">"</span><span class="p">)</span>
- <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">short_size</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span> <span class="ow">and</span> <span class="bp">self</span><span class="o">.</span><span class="n">short_size</span> <span class="o"><=</span> <span class="mi">0</span><span class="p">:</span>
- <span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span><span class="sa">f</span><span class="s2">"Short size must be a positive number, found: </span><span class="si">{</span><span class="bp">self</span><span class="o">.</span><span class="n">short_size</span><span class="si">}</span><span class="s2">"</span><span class="p">)</span>
- <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">long_size</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span> <span class="ow">and</span> <span class="bp">self</span><span class="o">.</span><span class="n">long_size</span> <span class="o"><=</span> <span class="mi">0</span><span class="p">:</span>
- <span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span><span class="sa">f</span><span class="s2">"Long size must be a positive number, found: </span><span class="si">{</span><span class="bp">self</span><span class="o">.</span><span class="n">long_size</span><span class="si">}</span><span class="s2">"</span><span class="p">)</span></div></div>
- <div class="viewcode-block" id="RandomRescale"><a class="viewcode-back" href="../../../../super_gradients.training.utils.html#super_gradients.training.utils.segmentation_utils.RandomRescale">[docs]</a><span class="k">class</span> <span class="nc">RandomRescale</span><span class="p">:</span>
- <span class="sd">"""</span>
- <span class="sd"> Random rescale the image and mask (synchronously) while preserving aspect ratio.</span>
- <span class="sd"> Scale factor is randomly picked between scales [min, max]</span>
- <span class="sd"> Args:</span>
- <span class="sd"> scales: scale range tuple (min, max), if scales is a float range will be defined as (1, scales) if scales > 1,</span>
- <span class="sd"> otherwise (scales, 1). must be a positive number.</span>
- <span class="sd"> """</span>
- <span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">scales</span><span class="p">:</span> <span class="n">Union</span><span class="p">[</span><span class="nb">float</span><span class="p">,</span> <span class="n">Tuple</span><span class="p">,</span> <span class="n">List</span><span class="p">]</span> <span class="o">=</span> <span class="p">(</span><span class="mf">0.5</span><span class="p">,</span> <span class="mf">2.0</span><span class="p">)):</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">scales</span> <span class="o">=</span> <span class="n">scales</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">check_valid_arguments</span><span class="p">()</span>
- <span class="k">def</span> <span class="fm">__call__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">sample</span><span class="p">:</span> <span class="nb">dict</span><span class="p">):</span>
- <span class="n">image</span> <span class="o">=</span> <span class="n">sample</span><span class="p">[</span><span class="s2">"image"</span><span class="p">]</span>
- <span class="n">mask</span> <span class="o">=</span> <span class="n">sample</span><span class="p">[</span><span class="s2">"mask"</span><span class="p">]</span>
- <span class="n">w</span><span class="p">,</span> <span class="n">h</span> <span class="o">=</span> <span class="n">image</span><span class="o">.</span><span class="n">size</span>
- <span class="n">scale</span> <span class="o">=</span> <span class="n">random</span><span class="o">.</span><span class="n">uniform</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">scales</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="bp">self</span><span class="o">.</span><span class="n">scales</span><span class="p">[</span><span class="mi">1</span><span class="p">])</span>
- <span class="n">out_size</span> <span class="o">=</span> <span class="nb">int</span><span class="p">(</span><span class="n">scale</span> <span class="o">*</span> <span class="n">w</span><span class="p">),</span> <span class="nb">int</span><span class="p">(</span><span class="n">scale</span> <span class="o">*</span> <span class="n">h</span><span class="p">)</span>
- <span class="n">image</span> <span class="o">=</span> <span class="n">image</span><span class="o">.</span><span class="n">resize</span><span class="p">(</span><span class="n">out_size</span><span class="p">,</span> <span class="n">image_resample</span><span class="p">)</span>
- <span class="n">mask</span> <span class="o">=</span> <span class="n">mask</span><span class="o">.</span><span class="n">resize</span><span class="p">(</span><span class="n">out_size</span><span class="p">,</span> <span class="n">mask_resample</span><span class="p">)</span>
- <span class="n">sample</span><span class="p">[</span><span class="s2">"image"</span><span class="p">]</span> <span class="o">=</span> <span class="n">image</span>
- <span class="n">sample</span><span class="p">[</span><span class="s2">"mask"</span><span class="p">]</span> <span class="o">=</span> <span class="n">mask</span>
- <span class="k">return</span> <span class="n">sample</span>
- <div class="viewcode-block" id="RandomRescale.check_valid_arguments"><a class="viewcode-back" href="../../../../super_gradients.training.utils.html#super_gradients.training.utils.segmentation_utils.RandomRescale.check_valid_arguments">[docs]</a> <span class="k">def</span> <span class="nf">check_valid_arguments</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
- <span class="sd">"""</span>
- <span class="sd"> Check the scale values are valid. if order is wrong, flip the order and return the right scale values.</span>
- <span class="sd"> """</span>
- <span class="k">if</span> <span class="ow">not</span> <span class="nb">isinstance</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">scales</span><span class="p">,</span> <span class="n">collections</span><span class="o">.</span><span class="n">abc</span><span class="o">.</span><span class="n">Iterable</span><span class="p">):</span>
- <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">scales</span> <span class="o"><=</span> <span class="mi">1</span><span class="p">:</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">scales</span> <span class="o">=</span> <span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">scales</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span>
- <span class="k">else</span><span class="p">:</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">scales</span> <span class="o">=</span> <span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">scales</span><span class="p">)</span>
- <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">scales</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span> <span class="o"><</span> <span class="mi">0</span> <span class="ow">or</span> <span class="bp">self</span><span class="o">.</span><span class="n">scales</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span> <span class="o"><</span> <span class="mi">0</span><span class="p">:</span>
- <span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span><span class="sa">f</span><span class="s2">"RandomRescale scale values must be positive numbers, found: </span><span class="si">{</span><span class="bp">self</span><span class="o">.</span><span class="n">scales</span><span class="si">}</span><span class="s2">"</span><span class="p">)</span>
- <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">scales</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span> <span class="o">></span> <span class="bp">self</span><span class="o">.</span><span class="n">scales</span><span class="p">[</span><span class="mi">1</span><span class="p">]:</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">scales</span> <span class="o">=</span> <span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">scales</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span> <span class="bp">self</span><span class="o">.</span><span class="n">scales</span><span class="p">[</span><span class="mi">0</span><span class="p">])</span>
- <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">scales</span></div></div>
- <div class="viewcode-block" id="RandomRotate"><a class="viewcode-back" href="../../../../super_gradients.training.utils.html#super_gradients.training.utils.segmentation_utils.RandomRotate">[docs]</a><span class="k">class</span> <span class="nc">RandomRotate</span><span class="p">(</span><span class="n">SegmentationTransform</span><span class="p">):</span>
- <span class="sd">"""</span>
- <span class="sd"> Randomly rotates image and mask (synchronously) between 'min_deg' and 'max_deg'.</span>
- <span class="sd"> """</span>
- <span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">min_deg</span><span class="p">:</span> <span class="nb">float</span> <span class="o">=</span> <span class="o">-</span><span class="mi">10</span><span class="p">,</span> <span class="n">max_deg</span><span class="p">:</span> <span class="nb">float</span> <span class="o">=</span> <span class="mi">10</span><span class="p">,</span> <span class="n">fill_mask</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">0</span><span class="p">,</span> <span class="n">fill_image</span><span class="p">:</span> <span class="n">Union</span><span class="p">[</span><span class="nb">int</span><span class="p">,</span> <span class="n">Tuple</span><span class="p">,</span> <span class="n">List</span><span class="p">]</span> <span class="o">=</span> <span class="mi">0</span><span class="p">):</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">min_deg</span> <span class="o">=</span> <span class="n">min_deg</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">max_deg</span> <span class="o">=</span> <span class="n">max_deg</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">fill_mask</span> <span class="o">=</span> <span class="n">fill_mask</span>
- <span class="c1"># grey color in RGB mode</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">fill_image</span> <span class="o">=</span> <span class="p">(</span><span class="n">fill_image</span><span class="p">,</span> <span class="n">fill_image</span><span class="p">,</span> <span class="n">fill_image</span><span class="p">)</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">check_valid_arguments</span><span class="p">()</span>
- <span class="k">def</span> <span class="fm">__call__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">sample</span><span class="p">:</span> <span class="nb">dict</span><span class="p">):</span>
- <span class="n">image</span> <span class="o">=</span> <span class="n">sample</span><span class="p">[</span><span class="s2">"image"</span><span class="p">]</span>
- <span class="n">mask</span> <span class="o">=</span> <span class="n">sample</span><span class="p">[</span><span class="s2">"mask"</span><span class="p">]</span>
- <span class="n">deg</span> <span class="o">=</span> <span class="n">random</span><span class="o">.</span><span class="n">uniform</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">min_deg</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">max_deg</span><span class="p">)</span>
- <span class="n">image</span> <span class="o">=</span> <span class="n">image</span><span class="o">.</span><span class="n">rotate</span><span class="p">(</span><span class="n">deg</span><span class="p">,</span> <span class="n">resample</span><span class="o">=</span><span class="n">image_resample</span><span class="p">,</span> <span class="n">fillcolor</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">fill_image</span><span class="p">)</span>
- <span class="n">mask</span> <span class="o">=</span> <span class="n">mask</span><span class="o">.</span><span class="n">rotate</span><span class="p">(</span><span class="n">deg</span><span class="p">,</span> <span class="n">resample</span><span class="o">=</span><span class="n">mask_resample</span><span class="p">,</span> <span class="n">fillcolor</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">fill_mask</span><span class="p">)</span>
- <span class="n">sample</span><span class="p">[</span><span class="s2">"image"</span><span class="p">]</span> <span class="o">=</span> <span class="n">image</span>
- <span class="n">sample</span><span class="p">[</span><span class="s2">"mask"</span><span class="p">]</span> <span class="o">=</span> <span class="n">mask</span>
- <span class="k">return</span> <span class="n">sample</span>
- <div class="viewcode-block" id="RandomRotate.check_valid_arguments"><a class="viewcode-back" href="../../../../super_gradients.training.utils.html#super_gradients.training.utils.segmentation_utils.RandomRotate.check_valid_arguments">[docs]</a> <span class="k">def</span> <span class="nf">check_valid_arguments</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">fill_mask</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">fill_image</span> <span class="o">=</span> <span class="n">_validate_fill_values_arguments</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">fill_mask</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">fill_image</span><span class="p">)</span></div></div>
- <div class="viewcode-block" id="CropImageAndMask"><a class="viewcode-back" href="../../../../super_gradients.training.utils.html#super_gradients.training.utils.segmentation_utils.CropImageAndMask">[docs]</a><span class="k">class</span> <span class="nc">CropImageAndMask</span><span class="p">(</span><span class="n">SegmentationTransform</span><span class="p">):</span>
- <span class="sd">"""</span>
- <span class="sd"> Crops image and mask (synchronously).</span>
- <span class="sd"> In "center" mode a center crop is performed while, in "random" mode the drop will be positioned around</span>
- <span class="sd"> random coordinates.</span>
- <span class="sd"> """</span>
- <span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">crop_size</span><span class="p">:</span> <span class="n">Union</span><span class="p">[</span><span class="nb">float</span><span class="p">,</span> <span class="n">Tuple</span><span class="p">,</span> <span class="n">List</span><span class="p">],</span> <span class="n">mode</span><span class="p">:</span> <span class="nb">str</span><span class="p">):</span>
- <span class="sd">"""</span>
- <span class="sd"> :param crop_size: tuple of (width, height) for the final crop size, if is scalar size is a</span>
- <span class="sd"> square (crop_size, crop_size)</span>
- <span class="sd"> :param mode: how to choose the center of the crop, 'center' for the center of the input image,</span>
- <span class="sd"> 'random' center the point is chosen randomally</span>
- <span class="sd"> """</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">crop_size</span> <span class="o">=</span> <span class="n">crop_size</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">mode</span> <span class="o">=</span> <span class="n">mode</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">check_valid_arguments</span><span class="p">()</span>
- <span class="k">def</span> <span class="fm">__call__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">sample</span><span class="p">:</span> <span class="nb">dict</span><span class="p">):</span>
- <span class="n">image</span> <span class="o">=</span> <span class="n">sample</span><span class="p">[</span><span class="s2">"image"</span><span class="p">]</span>
- <span class="n">mask</span> <span class="o">=</span> <span class="n">sample</span><span class="p">[</span><span class="s2">"mask"</span><span class="p">]</span>
- <span class="n">w</span><span class="p">,</span> <span class="n">h</span> <span class="o">=</span> <span class="n">image</span><span class="o">.</span><span class="n">size</span>
- <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">mode</span> <span class="o">==</span> <span class="s2">"random"</span><span class="p">:</span>
- <span class="n">x1</span> <span class="o">=</span> <span class="n">random</span><span class="o">.</span><span class="n">randint</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="n">w</span> <span class="o">-</span> <span class="bp">self</span><span class="o">.</span><span class="n">crop_size</span><span class="p">[</span><span class="mi">0</span><span class="p">])</span>
- <span class="n">y1</span> <span class="o">=</span> <span class="n">random</span><span class="o">.</span><span class="n">randint</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="n">h</span> <span class="o">-</span> <span class="bp">self</span><span class="o">.</span><span class="n">crop_size</span><span class="p">[</span><span class="mi">1</span><span class="p">])</span>
- <span class="k">else</span><span class="p">:</span>
- <span class="n">x1</span> <span class="o">=</span> <span class="nb">int</span><span class="p">(</span><span class="nb">round</span><span class="p">((</span><span class="n">w</span> <span class="o">-</span> <span class="bp">self</span><span class="o">.</span><span class="n">crop_size</span><span class="p">[</span><span class="mi">0</span><span class="p">])</span> <span class="o">/</span> <span class="mf">2.</span><span class="p">))</span>
- <span class="n">y1</span> <span class="o">=</span> <span class="nb">int</span><span class="p">(</span><span class="nb">round</span><span class="p">((</span><span class="n">h</span> <span class="o">-</span> <span class="bp">self</span><span class="o">.</span><span class="n">crop_size</span><span class="p">[</span><span class="mi">1</span><span class="p">])</span> <span class="o">/</span> <span class="mf">2.</span><span class="p">))</span>
- <span class="n">image</span> <span class="o">=</span> <span class="n">image</span><span class="o">.</span><span class="n">crop</span><span class="p">((</span><span class="n">x1</span><span class="p">,</span> <span class="n">y1</span><span class="p">,</span> <span class="n">x1</span> <span class="o">+</span> <span class="bp">self</span><span class="o">.</span><span class="n">crop_size</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">y1</span> <span class="o">+</span> <span class="bp">self</span><span class="o">.</span><span class="n">crop_size</span><span class="p">[</span><span class="mi">1</span><span class="p">]))</span>
- <span class="n">mask</span> <span class="o">=</span> <span class="n">mask</span><span class="o">.</span><span class="n">crop</span><span class="p">((</span><span class="n">x1</span><span class="p">,</span> <span class="n">y1</span><span class="p">,</span> <span class="n">x1</span> <span class="o">+</span> <span class="bp">self</span><span class="o">.</span><span class="n">crop_size</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">y1</span> <span class="o">+</span> <span class="bp">self</span><span class="o">.</span><span class="n">crop_size</span><span class="p">[</span><span class="mi">1</span><span class="p">]))</span>
- <span class="n">sample</span><span class="p">[</span><span class="s2">"image"</span><span class="p">]</span> <span class="o">=</span> <span class="n">image</span>
- <span class="n">sample</span><span class="p">[</span><span class="s2">"mask"</span><span class="p">]</span> <span class="o">=</span> <span class="n">mask</span>
- <span class="k">return</span> <span class="n">sample</span>
- <div class="viewcode-block" id="CropImageAndMask.check_valid_arguments"><a class="viewcode-back" href="../../../../super_gradients.training.utils.html#super_gradients.training.utils.segmentation_utils.CropImageAndMask.check_valid_arguments">[docs]</a> <span class="k">def</span> <span class="nf">check_valid_arguments</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
- <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">mode</span> <span class="ow">not</span> <span class="ow">in</span> <span class="p">[</span><span class="s2">"center"</span><span class="p">,</span> <span class="s2">"random"</span><span class="p">]:</span>
- <span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span><span class="sa">f</span><span class="s2">"Unsupported mode: found: </span><span class="si">{</span><span class="bp">self</span><span class="o">.</span><span class="n">mode</span><span class="si">}</span><span class="s2">, expected: 'center' or 'random'"</span><span class="p">)</span>
- <span class="k">if</span> <span class="ow">not</span> <span class="nb">isinstance</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">crop_size</span><span class="p">,</span> <span class="n">collections</span><span class="o">.</span><span class="n">abc</span><span class="o">.</span><span class="n">Iterable</span><span class="p">):</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">crop_size</span> <span class="o">=</span> <span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">crop_size</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">crop_size</span><span class="p">)</span>
- <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">crop_size</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span> <span class="o"><=</span> <span class="mi">0</span> <span class="ow">or</span> <span class="bp">self</span><span class="o">.</span><span class="n">crop_size</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span> <span class="o"><=</span> <span class="mi">0</span><span class="p">:</span>
- <span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span><span class="sa">f</span><span class="s2">"Crop size must be positive numbers, found: </span><span class="si">{</span><span class="bp">self</span><span class="o">.</span><span class="n">crop_size</span><span class="si">}</span><span class="s2">"</span><span class="p">)</span></div></div>
- <div class="viewcode-block" id="RandomGaussianBlur"><a class="viewcode-back" href="../../../../super_gradients.training.utils.html#super_gradients.training.utils.segmentation_utils.RandomGaussianBlur">[docs]</a><span class="k">class</span> <span class="nc">RandomGaussianBlur</span><span class="p">(</span><span class="n">SegmentationTransform</span><span class="p">):</span>
- <span class="sd">"""</span>
- <span class="sd"> Adds random Gaussian Blur to image with probability 'prob'.</span>
- <span class="sd"> """</span>
- <span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">prob</span><span class="p">:</span> <span class="nb">float</span> <span class="o">=</span> <span class="mf">0.5</span><span class="p">):</span>
- <span class="k">assert</span> <span class="mf">0.</span> <span class="o"><=</span> <span class="n">prob</span> <span class="o"><=</span> <span class="mf">1.</span><span class="p">,</span> <span class="s2">"Probability value must be between 0 and 1"</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">prob</span> <span class="o">=</span> <span class="n">prob</span>
- <span class="k">def</span> <span class="fm">__call__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">sample</span><span class="p">:</span> <span class="nb">dict</span><span class="p">):</span>
- <span class="n">image</span> <span class="o">=</span> <span class="n">sample</span><span class="p">[</span><span class="s2">"image"</span><span class="p">]</span>
- <span class="n">mask</span> <span class="o">=</span> <span class="n">sample</span><span class="p">[</span><span class="s2">"mask"</span><span class="p">]</span>
- <span class="k">if</span> <span class="n">random</span><span class="o">.</span><span class="n">random</span><span class="p">()</span> <span class="o"><</span> <span class="bp">self</span><span class="o">.</span><span class="n">prob</span><span class="p">:</span>
- <span class="n">image</span> <span class="o">=</span> <span class="n">image</span><span class="o">.</span><span class="n">filter</span><span class="p">(</span><span class="n">ImageFilter</span><span class="o">.</span><span class="n">GaussianBlur</span><span class="p">(</span>
- <span class="n">radius</span><span class="o">=</span><span class="n">random</span><span class="o">.</span><span class="n">random</span><span class="p">()))</span>
- <span class="n">sample</span><span class="p">[</span><span class="s2">"image"</span><span class="p">]</span> <span class="o">=</span> <span class="n">image</span>
- <span class="n">sample</span><span class="p">[</span><span class="s2">"mask"</span><span class="p">]</span> <span class="o">=</span> <span class="n">mask</span>
- <span class="k">return</span> <span class="n">sample</span></div>
- <div class="viewcode-block" id="PadShortToCropSize"><a class="viewcode-back" href="../../../../super_gradients.training.utils.html#super_gradients.training.utils.segmentation_utils.PadShortToCropSize">[docs]</a><span class="k">class</span> <span class="nc">PadShortToCropSize</span><span class="p">(</span><span class="n">SegmentationTransform</span><span class="p">):</span>
- <span class="sd">"""</span>
- <span class="sd"> Pads image to 'crop_size'.</span>
- <span class="sd"> Should be called only after "Rescale" or "RandomRescale" in augmentations pipeline.</span>
- <span class="sd"> """</span>
- <span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">crop_size</span><span class="p">:</span> <span class="n">Union</span><span class="p">[</span><span class="nb">float</span><span class="p">,</span> <span class="n">Tuple</span><span class="p">,</span> <span class="n">List</span><span class="p">],</span> <span class="n">fill_mask</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">0</span><span class="p">,</span> <span class="n">fill_image</span><span class="p">:</span> <span class="n">Union</span><span class="p">[</span><span class="nb">int</span><span class="p">,</span> <span class="n">Tuple</span><span class="p">,</span> <span class="n">List</span><span class="p">]</span> <span class="o">=</span> <span class="mi">0</span><span class="p">):</span>
- <span class="sd">"""</span>
- <span class="sd"> :param crop_size: tuple of (width, height) for the final crop size, if is scalar size is a</span>
- <span class="sd"> square (crop_size, crop_size)</span>
- <span class="sd"> :param fill_mask: value to fill mask labels background.</span>
- <span class="sd"> :param fill_image: grey value to fill image padded background.</span>
- <span class="sd"> """</span>
- <span class="c1"># CHECK IF CROP SIZE IS A ITERABLE OR SCALAR</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">crop_size</span> <span class="o">=</span> <span class="n">crop_size</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">fill_mask</span> <span class="o">=</span> <span class="n">fill_mask</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">fill_image</span> <span class="o">=</span> <span class="nb">tuple</span><span class="p">(</span><span class="n">fill_image</span><span class="p">)</span> <span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">fill_image</span><span class="p">,</span> <span class="n">Sequence</span><span class="p">)</span> <span class="k">else</span> <span class="n">fill_image</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">check_valid_arguments</span><span class="p">()</span>
- <span class="k">def</span> <span class="fm">__call__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">sample</span><span class="p">:</span> <span class="nb">dict</span><span class="p">):</span>
- <span class="n">image</span> <span class="o">=</span> <span class="n">sample</span><span class="p">[</span><span class="s2">"image"</span><span class="p">]</span>
- <span class="n">mask</span> <span class="o">=</span> <span class="n">sample</span><span class="p">[</span><span class="s2">"mask"</span><span class="p">]</span>
- <span class="n">w</span><span class="p">,</span> <span class="n">h</span> <span class="o">=</span> <span class="n">image</span><span class="o">.</span><span class="n">size</span>
- <span class="c1"># pad images from center symmetrically</span>
- <span class="k">if</span> <span class="n">w</span> <span class="o"><</span> <span class="bp">self</span><span class="o">.</span><span class="n">crop_size</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span> <span class="ow">or</span> <span class="n">h</span> <span class="o"><</span> <span class="bp">self</span><span class="o">.</span><span class="n">crop_size</span><span class="p">[</span><span class="mi">1</span><span class="p">]:</span>
- <span class="n">padh</span> <span class="o">=</span> <span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">crop_size</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span> <span class="o">-</span> <span class="n">h</span><span class="p">)</span> <span class="o">/</span> <span class="mi">2</span> <span class="k">if</span> <span class="n">h</span> <span class="o"><</span> <span class="bp">self</span><span class="o">.</span><span class="n">crop_size</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span> <span class="k">else</span> <span class="mi">0</span>
- <span class="n">pad_top</span><span class="p">,</span> <span class="n">pad_bottom</span> <span class="o">=</span> <span class="n">math</span><span class="o">.</span><span class="n">ceil</span><span class="p">(</span><span class="n">padh</span><span class="p">),</span> <span class="n">math</span><span class="o">.</span><span class="n">floor</span><span class="p">(</span><span class="n">padh</span><span class="p">)</span>
- <span class="n">padw</span> <span class="o">=</span> <span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">crop_size</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span> <span class="o">-</span> <span class="n">w</span><span class="p">)</span> <span class="o">/</span> <span class="mi">2</span> <span class="k">if</span> <span class="n">w</span> <span class="o"><</span> <span class="bp">self</span><span class="o">.</span><span class="n">crop_size</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span> <span class="k">else</span> <span class="mi">0</span>
- <span class="n">pad_left</span><span class="p">,</span> <span class="n">pad_right</span> <span class="o">=</span> <span class="n">math</span><span class="o">.</span><span class="n">ceil</span><span class="p">(</span><span class="n">padw</span><span class="p">),</span> <span class="n">math</span><span class="o">.</span><span class="n">floor</span><span class="p">(</span><span class="n">padw</span><span class="p">)</span>
- <span class="n">image</span> <span class="o">=</span> <span class="n">ImageOps</span><span class="o">.</span><span class="n">expand</span><span class="p">(</span><span class="n">image</span><span class="p">,</span> <span class="n">border</span><span class="o">=</span><span class="p">(</span><span class="n">pad_left</span><span class="p">,</span> <span class="n">pad_top</span><span class="p">,</span> <span class="n">pad_right</span><span class="p">,</span> <span class="n">pad_bottom</span><span class="p">),</span> <span class="n">fill</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">fill_image</span><span class="p">)</span>
- <span class="n">mask</span> <span class="o">=</span> <span class="n">ImageOps</span><span class="o">.</span><span class="n">expand</span><span class="p">(</span><span class="n">mask</span><span class="p">,</span> <span class="n">border</span><span class="o">=</span><span class="p">(</span><span class="n">pad_left</span><span class="p">,</span> <span class="n">pad_top</span><span class="p">,</span> <span class="n">pad_right</span><span class="p">,</span> <span class="n">pad_bottom</span><span class="p">),</span> <span class="n">fill</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">fill_mask</span><span class="p">)</span>
- <span class="n">sample</span><span class="p">[</span><span class="s2">"image"</span><span class="p">]</span> <span class="o">=</span> <span class="n">image</span>
- <span class="n">sample</span><span class="p">[</span><span class="s2">"mask"</span><span class="p">]</span> <span class="o">=</span> <span class="n">mask</span>
- <span class="k">return</span> <span class="n">sample</span>
- <div class="viewcode-block" id="PadShortToCropSize.check_valid_arguments"><a class="viewcode-back" href="../../../../super_gradients.training.utils.html#super_gradients.training.utils.segmentation_utils.PadShortToCropSize.check_valid_arguments">[docs]</a> <span class="k">def</span> <span class="nf">check_valid_arguments</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
- <span class="k">if</span> <span class="ow">not</span> <span class="nb">isinstance</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">crop_size</span><span class="p">,</span> <span class="n">collections</span><span class="o">.</span><span class="n">abc</span><span class="o">.</span><span class="n">Iterable</span><span class="p">):</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">crop_size</span> <span class="o">=</span> <span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">crop_size</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">crop_size</span><span class="p">)</span>
- <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">crop_size</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span> <span class="o"><=</span> <span class="mi">0</span> <span class="ow">or</span> <span class="bp">self</span><span class="o">.</span><span class="n">crop_size</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span> <span class="o"><=</span> <span class="mi">0</span><span class="p">:</span>
- <span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span><span class="sa">f</span><span class="s2">"Crop size must be positive numbers, found: </span><span class="si">{</span><span class="bp">self</span><span class="o">.</span><span class="n">crop_size</span><span class="si">}</span><span class="s2">"</span><span class="p">)</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">fill_mask</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">fill_image</span> <span class="o">=</span> <span class="n">_validate_fill_values_arguments</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">fill_mask</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">fill_image</span><span class="p">)</span></div></div>
- <div class="viewcode-block" id="ColorJitterSeg"><a class="viewcode-back" href="../../../../super_gradients.training.utils.html#super_gradients.training.utils.segmentation_utils.ColorJitterSeg">[docs]</a><span class="k">class</span> <span class="nc">ColorJitterSeg</span><span class="p">(</span><span class="n">transforms</span><span class="o">.</span><span class="n">ColorJitter</span><span class="p">):</span>
- <span class="k">def</span> <span class="fm">__call__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">sample</span><span class="p">):</span>
- <span class="n">sample</span><span class="p">[</span><span class="s2">"image"</span><span class="p">]</span> <span class="o">=</span> <span class="nb">super</span><span class="p">(</span><span class="n">ColorJitterSeg</span><span class="p">,</span> <span class="bp">self</span><span class="p">)</span><span class="o">.</span><span class="fm">__call__</span><span class="p">(</span><span class="n">sample</span><span class="p">[</span><span class="s2">"image"</span><span class="p">])</span>
- <span class="k">return</span> <span class="n">sample</span></div>
- <span class="k">def</span> <span class="nf">_validate_fill_values_arguments</span><span class="p">(</span><span class="n">fill_mask</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span> <span class="n">fill_image</span><span class="p">:</span> <span class="n">Union</span><span class="p">[</span><span class="nb">int</span><span class="p">,</span> <span class="n">Tuple</span><span class="p">,</span> <span class="n">List</span><span class="p">]):</span>
- <span class="k">if</span> <span class="ow">not</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">fill_image</span><span class="p">,</span> <span class="n">collections</span><span class="o">.</span><span class="n">abc</span><span class="o">.</span><span class="n">Iterable</span><span class="p">):</span>
- <span class="c1"># If fill_image is single value, turn to grey color in RGB mode.</span>
- <span class="n">fill_image</span> <span class="o">=</span> <span class="p">(</span><span class="n">fill_image</span><span class="p">,</span> <span class="n">fill_image</span><span class="p">,</span> <span class="n">fill_image</span><span class="p">)</span>
- <span class="k">elif</span> <span class="nb">len</span><span class="p">(</span><span class="n">fill_image</span><span class="p">)</span> <span class="o">!=</span> <span class="mi">3</span><span class="p">:</span>
- <span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span><span class="sa">f</span><span class="s2">"fill_image must be an RGB tuple of size equal to 3, found: </span><span class="si">{</span><span class="n">fill_image</span><span class="si">}</span><span class="s2">"</span><span class="p">)</span>
- <span class="c1"># assert values are integers</span>
- <span class="k">if</span> <span class="ow">not</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">fill_mask</span><span class="p">,</span> <span class="nb">int</span><span class="p">)</span> <span class="ow">or</span> <span class="ow">not</span> <span class="nb">all</span><span class="p">(</span><span class="nb">isinstance</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="nb">int</span><span class="p">)</span> <span class="k">for</span> <span class="n">x</span> <span class="ow">in</span> <span class="n">fill_image</span><span class="p">):</span>
- <span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span><span class="sa">f</span><span class="s2">"Fill value must be integers,"</span>
- <span class="sa">f</span><span class="s2">" found: fill_image = </span><span class="si">{</span><span class="n">fill_image</span><span class="si">}</span><span class="s2">, fill_mask = </span><span class="si">{</span><span class="n">fill_mask</span><span class="si">}</span><span class="s2">"</span><span class="p">)</span>
- <span class="c1"># assert values in range 0-255</span>
- <span class="k">if</span> <span class="nb">min</span><span class="p">(</span><span class="n">fill_image</span><span class="p">)</span> <span class="o"><</span> <span class="mi">0</span> <span class="ow">or</span> <span class="nb">max</span><span class="p">(</span><span class="n">fill_image</span><span class="p">)</span> <span class="o">></span> <span class="mi">255</span> <span class="ow">or</span> <span class="n">fill_mask</span> <span class="o"><</span> <span class="mi">0</span> <span class="ow">or</span> <span class="n">fill_mask</span> <span class="o">></span> <span class="mi">255</span><span class="p">:</span>
- <span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span><span class="sa">f</span><span class="s2">"Fill value must be a value from 0 to 255,"</span>
- <span class="sa">f</span><span class="s2">" found: fill_image = </span><span class="si">{</span><span class="n">fill_image</span><span class="si">}</span><span class="s2">, fill_mask = </span><span class="si">{</span><span class="n">fill_mask</span><span class="si">}</span><span class="s2">"</span><span class="p">)</span>
- <span class="k">return</span> <span class="n">fill_mask</span><span class="p">,</span> <span class="n">fill_image</span>
- <div class="viewcode-block" id="coco_sub_classes_inclusion_tuples_list"><a class="viewcode-back" href="../../../../super_gradients.training.utils.html#super_gradients.training.utils.segmentation_utils.coco_sub_classes_inclusion_tuples_list">[docs]</a><span class="k">def</span> <span class="nf">coco_sub_classes_inclusion_tuples_list</span><span class="p">():</span>
- <span class="k">return</span> <span class="p">[(</span><span class="mi">0</span><span class="p">,</span> <span class="s1">'background'</span><span class="p">),</span> <span class="p">(</span><span class="mi">5</span><span class="p">,</span> <span class="s1">'airplane'</span><span class="p">),</span> <span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="s1">'bicycle'</span><span class="p">),</span> <span class="p">(</span><span class="mi">16</span><span class="p">,</span> <span class="s1">'bird'</span><span class="p">),</span>
- <span class="p">(</span><span class="mi">9</span><span class="p">,</span> <span class="s1">'boat'</span><span class="p">),</span>
- <span class="p">(</span><span class="mi">44</span><span class="p">,</span> <span class="s1">'bottle'</span><span class="p">),</span> <span class="p">(</span><span class="mi">6</span><span class="p">,</span> <span class="s1">'bus'</span><span class="p">),</span> <span class="p">(</span><span class="mi">3</span><span class="p">,</span> <span class="s1">'car'</span><span class="p">),</span> <span class="p">(</span><span class="mi">17</span><span class="p">,</span> <span class="s1">'cat'</span><span class="p">),</span> <span class="p">(</span><span class="mi">62</span><span class="p">,</span> <span class="s1">'chair'</span><span class="p">),</span>
- <span class="p">(</span><span class="mi">21</span><span class="p">,</span> <span class="s1">'cow'</span><span class="p">),</span>
- <span class="p">(</span><span class="mi">67</span><span class="p">,</span> <span class="s1">'dining table'</span><span class="p">),</span> <span class="p">(</span><span class="mi">18</span><span class="p">,</span> <span class="s1">'dog'</span><span class="p">),</span> <span class="p">(</span><span class="mi">19</span><span class="p">,</span> <span class="s1">'horse'</span><span class="p">),</span> <span class="p">(</span><span class="mi">4</span><span class="p">,</span> <span class="s1">'motorcycle'</span><span class="p">),</span>
- <span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="s1">'person'</span><span class="p">),</span>
- <span class="p">(</span><span class="mi">64</span><span class="p">,</span> <span class="s1">'potted plant'</span><span class="p">),</span> <span class="p">(</span><span class="mi">20</span><span class="p">,</span> <span class="s1">'sheep'</span><span class="p">),</span> <span class="p">(</span><span class="mi">63</span><span class="p">,</span> <span class="s1">'couch'</span><span class="p">),</span> <span class="p">(</span><span class="mi">7</span><span class="p">,</span> <span class="s1">'train'</span><span class="p">),</span>
- <span class="p">(</span><span class="mi">72</span><span class="p">,</span> <span class="s1">'tv'</span><span class="p">)]</span></div>
- <div class="viewcode-block" id="to_one_hot"><a class="viewcode-back" href="../../../../super_gradients.training.utils.html#super_gradients.training.utils.segmentation_utils.to_one_hot">[docs]</a><span class="k">def</span> <span class="nf">to_one_hot</span><span class="p">(</span><span class="n">target</span><span class="p">:</span> <span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span><span class="p">,</span> <span class="n">num_classes</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span> <span class="n">ignore_index</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="kc">None</span><span class="p">):</span>
- <span class="sd">"""</span>
- <span class="sd"> Target label to one_hot tensor. labels and ignore_index must be consecutive numbers.</span>
- <span class="sd"> :param target: Class labels long tensor, with shape [N, H, W]</span>
- <span class="sd"> :param num_classes: num of classes in datasets excluding ignore label, this is the output channels of the one hot</span>
- <span class="sd"> result.</span>
- <span class="sd"> :return: one hot tensor with shape [N, num_classes, H, W]</span>
- <span class="sd"> """</span>
- <span class="n">num_classes</span> <span class="o">=</span> <span class="n">num_classes</span> <span class="k">if</span> <span class="n">ignore_index</span> <span class="ow">is</span> <span class="kc">None</span> <span class="k">else</span> <span class="n">num_classes</span> <span class="o">+</span> <span class="mi">1</span>
- <span class="n">one_hot</span> <span class="o">=</span> <span class="n">F</span><span class="o">.</span><span class="n">one_hot</span><span class="p">(</span><span class="n">target</span><span class="p">,</span> <span class="n">num_classes</span><span class="p">)</span><span class="o">.</span><span class="n">permute</span><span class="p">((</span><span class="mi">0</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">))</span>
- <span class="k">if</span> <span class="n">ignore_index</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
- <span class="c1"># remove ignore_index channel</span>
- <span class="n">one_hot</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">cat</span><span class="p">([</span><span class="n">one_hot</span><span class="p">[:,</span> <span class="p">:</span><span class="n">ignore_index</span><span class="p">],</span> <span class="n">one_hot</span><span class="p">[:,</span> <span class="n">ignore_index</span> <span class="o">+</span> <span class="mi">1</span><span class="p">:]],</span> <span class="n">dim</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
- <span class="k">return</span> <span class="n">one_hot</span></div>
- </pre></div>
- </div>
- </div>
- <footer>
- <hr/>
- <div role="contentinfo">
- <p>© Copyright 2021, SuperGradients team.</p>
- </div>
- Built with <a href="https://www.sphinx-doc.org/">Sphinx</a> using a
- <a href="https://github.com/readthedocs/sphinx_rtd_theme">theme</a>
- provided by <a href="https://readthedocs.org">Read the Docs</a>.
-
- </footer>
- </div>
- </div>
- </section>
- </div>
- <script>
- jQuery(function () {
- SphinxRtdTheme.Navigation.enable(true);
- });
- </script>
- </body>
- </html>
|