Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

cityscapes_pplite_seg50.yaml 3.3 KB

You have to be logged in to leave a comment. Sign In
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
  1. # PPLiteSeg segmentation training example with Cityscapes dataset.
  2. # Torch implementation of the paper:
  3. # Juncai Peng, Yi Liu, Shiyu Tang, Yuying Hao, Lutao Chu, Guowei Chen, Zewu Wu, Zeyu Chen, Zhiliang Yu, Yuning Du,
  4. # Qingqing Dang,Baohua Lai, Qiwen Liu, Xiaoguang Hu, Dianhai Yu, Yanjun Ma.
  5. # PP-LiteSeg: A Superior Real-Time Semantic Segmentation Model.
  6. # Instructions:
  7. # 0. Make sure that the data is stored in dataset_params.dataset_dir or add "dataset_params.data_dir=<PATH-TO-DATASET>" at the end of the command below (feel free to check ReadMe)
  8. # 1. Move to the project root (where you will find the ReadMe and src folder)
  9. # 2. Run the command:
  10. # PPLite-T-Seg50: python -m super_gradients.train_from_recipe --config-name=cityscapes_pplite_seg50 checkpoint_params.checkpoint_path=<stdc1-backbone-pretrained-path> architecture=pp_lite_t_seg
  11. # PPLite-B-Seg50: python -m super_gradients.train_from_recipe --config-name=cityscapes_pplite_seg50 checkpoint_params.checkpoint_path=<stdc2-backbone-pretrained-path> architecture=pp_lite_b_seg
  12. #
  13. #
  14. # Validation mIoU - Cityscapes, training time:
  15. # PPLite-T-Seg50: input-size: [512, 1024] mIoU: 74.92 4 X RTX A5000, 13 H
  16. # PPLite-B-Seg50: input-size: [512, 1024] mIoU: 76.48 4 X RTX A5000, 14 H
  17. #
  18. # Official git repo:
  19. # https://github.com/PaddlePaddle/PaddleSeg/
  20. # Paper:
  21. # https://arxiv.org/abs/2204.02681
  22. #
  23. # Pretrained checkpoints:
  24. # Backbones- downloaded from the STDC author's official repo.
  25. # PPLite-T-Seg50, (STDC1-backbone): https://deci-pretrained-models.s3.amazonaws.com/stdc_backbones/stdc1_imagenet_pretrained.pth
  26. # PPLite-B-Seg50, (STDC2-backbone): https://deci-pretrained-models.s3.amazonaws.com/stdc_backbones/stdc2_imagenet_pretrained.pth
  27. #
  28. # Logs, tensorboards and network checkpoints:
  29. # PPLite-T-Seg50: https://deci-pretrained-models.s3.amazonaws.com/ppliteseg/cityscapes/pplite_t_seg50/
  30. # PPLite-B-Seg50: https://deci-pretrained-models.s3.amazonaws.com/ppliteseg/cityscapes/pplite_b_seg50/
  31. #
  32. # Learning rate and batch size parameters, using 2 RTX A5000 with DDP:
  33. # PPLite-T-Seg50: input-size: [512, 1024] initial_lr: 0.01 batch-size: 8 * 4gpus = 32
  34. # PPLite-B-Seg50: input-size: [512, 1024] initial_lr: 0.01 batch-size: 8 * 4gpus = 32
  35. #
  36. # Comments:
  37. # * ImageNet Pretrained backbones were used.
  38. defaults:
  39. - training_hyperparams: cityscapes_default_train_params
  40. - dataset_params: cityscapes_stdc_seg50_dataset_params
  41. - checkpoint_params: default_checkpoint_params
  42. - _self_
  43. - variable_setup
  44. train_dataloader: cityscapes_train
  45. val_dataloader: cityscapes_val
  46. architecture: pp_lite_t_seg
  47. dataset_params:
  48. train_dataloader_params:
  49. batch_size: 8
  50. val_dataloader_params:
  51. batch_size: 8
  52. arch_params:
  53. num_classes: 19
  54. use_aux_heads: True
  55. checkpoint_params:
  56. checkpoint_path:
  57. load_backbone: True
  58. load_weights_only: True
  59. strict_load: no_key_matching
  60. training_hyperparams:
  61. sync_bn: True
  62. initial_lr:
  63. "encoder.backbone": 0.01
  64. default: 0.1
  65. loss:
  66. DiceCEEdgeLoss:
  67. num_classes: 19
  68. ignore_index: 19
  69. num_aux_heads: 3
  70. num_detail_heads: 0
  71. weights: [ 1., 1., 1., 1. ]
  72. dice_ce_weights: [ 1., 1. ]
  73. ce_edge_weights: [ .5, .5 ]
  74. edge_kernel: 5
  75. multi_gpu: DDP
  76. num_gpus: 4
  77. experiment_name: ${architecture}50_cityscapes
Tip!

Press p or to see the previous file or, n or to see the next file

Comments

Loading...