1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
|
- import unittest
- from enum import Enum
- import re
- from super_gradients import (
- SgModel,
- ClassificationTestDatasetInterface,
- DetectionTestDatasetInterface,
- SegmentationTestDatasetInterface,
- )
- from super_gradients.training.utils.callbacks import ModelConversionCheckCallback
- from super_gradients.training.utils.detection_utils import Anchors
- from super_gradients.training.models.detection_models.yolov5 import YoloV5PostPredictionCallback
- from super_gradients.training.metrics import Accuracy, Top5, IoU
- from super_gradients.training.metrics.detection_metrics import DetectionMetrics
- from super_gradients.training.losses.stdc_loss import STDCLoss
- from super_gradients.training.losses.ddrnet_loss import DDRNetLoss
- from deci_lab_client.models import ModelMetadata, HardwareType, FrameworkType
- checkpoint_dir = "/Users/daniel/Documents/LALA"
- class Task(Enum):
- CLASSIFICATION = "classification"
- OBJECT_DETECTION = "object_detection"
- SEMANTIC_SEGMENTATION = "semantic_segmentation"
- def generate_model_metadata(architecture: str, task: Task):
- model_name = f"{architecture}_for_testing"
- return ModelMetadata(
- name=model_name,
- primary_batch_size=1,
- architecture=architecture.title(),
- framework=FrameworkType.PYTORCH,
- dl_task=task.value,
- input_dimensions=(3, 320, 320),
- primary_hardware=HardwareType.K80,
- dataset_name="ImageNet",
- description=f"{model_name} deci.ai Test",
- tags=["imagenet", model_name],
- )
- CLASSIFICATION = ["efficientnet_b0", "regnetY200", "regnetY400", "regnetY600", "regnetY800", "mobilenet_v3_large"]
- OBJECT_DETECTION = ["yolo_v5n", "yolo_v5s", "yolo_v5m", "yolo_v5l"]
- SEMANTIC_SEGMENTATION = ["ddrnet_23", "stdc1_seg", "stdc2_seg", "regseg48"]
- class ConversionCallbackTest(unittest.TestCase):
- def test_classification_architectures(self):
- for architecture in CLASSIFICATION:
- model_meta_data = generate_model_metadata(architecture=architecture, task=Task.CLASSIFICATION)
- phase_callbacks = [ModelConversionCheckCallback(model_meta_data=model_meta_data, opset_version=11)]
- train_params = {
- "max_epochs": 2,
- "lr_updates": [1],
- "lr_decay_factor": 0.1,
- "lr_mode": "step",
- "lr_warmup_epochs": 0,
- "initial_lr": 0.1,
- "loss": "cross_entropy",
- "optimizer": "SGD",
- "criterion_params": {},
- "train_metrics_list": [Accuracy(), Top5()],
- "valid_metrics_list": [Accuracy(), Top5()],
- "loss_logging_items_names": ["Loss"],
- "metric_to_watch": "Accuracy",
- "greater_metric_to_watch_is_better": True,
- "phase_callbacks": phase_callbacks,
- }
- model = SgModel(f"{architecture}_example", model_checkpoints_location="local", ckpt_root_dir=checkpoint_dir)
- dataset = ClassificationTestDatasetInterface(dataset_params={"batch_size": 10})
- model.connect_dataset_interface(dataset, data_loader_num_workers=0)
- model.build_model(architecture=architecture, arch_params={"use_aux_heads": True, "aux_head": True})
- try:
- model.train(train_params)
- except Exception as e:
- self.fail(f"Model training didn't succeed due to {e}")
- else:
- self.assertTrue(True)
- def test_object_detection_architectures(self):
- for architecture in OBJECT_DETECTION:
- model_meta_data = generate_model_metadata(architecture=architecture, task=Task.OBJECT_DETECTION)
- dataset = DetectionTestDatasetInterface(dataset_params={"batch_size": 10})
- model = SgModel(f"{architecture}_example", model_checkpoints_location="local", ckpt_root_dir=checkpoint_dir)
- model.connect_dataset_interface(dataset, data_loader_num_workers=0)
- model.build_model(architecture=architecture, arch_params={"use_aux_heads": True, "aux_head": True})
- phase_callbacks = [ModelConversionCheckCallback(model_meta_data=model_meta_data, opset_version=11)]
- coco2017_quickstart_anchors = Anchors(
- anchors_list=[[5, 6, 8, 15, 21, 13], [15, 36, 32, 32, 36, 80], [71, 55, 89, 137, 213, 167]],
- strides=[8, 16, 32],
- )
- train_params = {
- "max_epochs": 1,
- "lr_mode": "cosine",
- "initial_lr": 0.01,
- "cosine_final_lr_ratio": 0.1,
- "lr_warmup_epochs": 2,
- "batch_accumulate": 1,
- "warmup_bias_lr": 0.1,
- "loss": "yolo_v5_loss",
- "criterion_params": {
- "anchors": coco2017_quickstart_anchors,
- "box_loss_gain": 0.05, # COEF FOR BOX LOSS COMPONENT
- "cls_loss_gain": 0.5, # COEF FOR CLASSIFICATION
- "obj_loss_gain": 0.25, # OBJECT BCE COEF
- },
- "optimizer": "SGD",
- "warmup_momentum": 0.8,
- "optimizer_params": {
- "momentum": 0.937,
- "weight_decay": 0.0005 * (dataset.dataset_params.to_dict()["batch_size"] / 64.0),
- "nesterov": True,
- },
- "mixed_precision": False,
- "ema": True,
- "train_metrics_list": [],
- "valid_metrics_list": [
- DetectionMetrics(
- post_prediction_callback=YoloV5PostPredictionCallback(), num_cls=len(dataset.classes)
- )
- ],
- "loss_logging_items_names": ["GIoU", "obj", "cls", "Loss"],
- "metric_to_watch": "mAP@0.50:0.95",
- "greater_metric_to_watch_is_better": True,
- "warmup_mode": "yolov5_warmup",
- "phase_callbacks": phase_callbacks,
- }
- try:
- model.train(train_params)
- except Exception as e:
- self.fail(f"Model training didn't succeed due to {e}")
- else:
- self.assertTrue(True)
- def test_segmentation_architectures(self):
- def get_architecture_custom_config(architecture_name: str):
- if re.search(r"ddrnet", architecture_name):
- return {
- "loss_logging_items_names": ["main_loss", "aux_loss", "Loss"],
- "loss": DDRNetLoss(num_pixels_exclude_ignored=False),
- }
- elif re.search(r"stdc", architecture_name):
- return {
- "loss_logging_items_names": ["main_loss", "aux_loss1", "aux_loss2", "detail_loss", "loss"],
- "loss": STDCLoss(num_classes=5),
- }
- elif re.search(r"regseg", architecture_name):
- return {
- "loss_logging_items_names": ["Loss"],
- "loss": "cross_entropy",
- }
- else:
- raise Exception("You tried to run a conversion test on an unknown architecture")
- for architecture in SEMANTIC_SEGMENTATION:
- model_meta_data = generate_model_metadata(architecture=architecture, task=Task.SEMANTIC_SEGMENTATION)
- dataset = SegmentationTestDatasetInterface(dataset_params={"batch_size": 10})
- model = SgModel(f"{architecture}_example", model_checkpoints_location="local", ckpt_root_dir=checkpoint_dir)
- model.connect_dataset_interface(dataset, data_loader_num_workers=0)
- model.build_model(architecture=architecture, arch_params={"use_aux_heads": True, "aux_head": True})
- phase_callbacks = [
- ModelConversionCheckCallback(model_meta_data=model_meta_data, opset_version=11, rtol=1, atol=1),
- ]
- train_params = {
- "max_epochs": 3,
- "initial_lr": 1e-2,
- "lr_mode": "poly",
- "ema": True, # unlike the paper (not specified in paper)
- "optimizer": "SGD",
- "optimizer_params": {"weight_decay": 5e-4, "momentum": 0.9},
- "load_opt_params": False,
- "train_metrics_list": [IoU(5)],
- "valid_metrics_list": [IoU(5)],
- "metric_to_watch": "IoU",
- "greater_metric_to_watch_is_better": True,
- "phase_callbacks": phase_callbacks,
- }
- custom_config = get_architecture_custom_config(architecture_name=architecture)
- train_params.update(custom_config)
- try:
- model.train(train_params)
- except Exception as e:
- self.fail(f"Model training didn't succeed for {architecture} due to {e}")
- else:
- self.assertTrue(True)
|