Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

phase_delegates_test.py 3.6 KB

You have to be logged in to leave a comment. Sign In
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
  1. import unittest
  2. from super_gradients.training import Trainer
  3. from super_gradients.training.dataloaders.dataloaders import classification_test_dataloader
  4. from super_gradients.training.metrics import Accuracy
  5. from super_gradients.training.models import LeNet
  6. from super_gradients.training.utils.callbacks import Phase, PhaseCallback, PhaseContext
  7. class ContextMethodsCheckerCallback(PhaseCallback):
  8. """
  9. Callback for checking that at a certain phase specific Trainer methods are accessible.
  10. """
  11. def __init__(self, phase: Phase, accessible_method_names: list, non_accessible_method_names: list):
  12. super(ContextMethodsCheckerCallback, self).__init__(phase)
  13. self.accessible_method_names = accessible_method_names
  14. self.non_accessible_method_names = non_accessible_method_names
  15. self.result = True
  16. def __call__(self, context: PhaseContext):
  17. for accessible_method_name in self.accessible_method_names:
  18. if not hasattr(context.context_methods, accessible_method_name):
  19. self.result = False
  20. for non_accessible_method_name in self.non_accessible_method_names:
  21. if hasattr(context.context_methods, non_accessible_method_name):
  22. self.result = False
  23. class ContextMethodsTest(unittest.TestCase):
  24. def test_access_to_methods_by_phase(self):
  25. net = LeNet()
  26. trainer = Trainer("test_access_to_methods_by_phase")
  27. phase_callbacks = []
  28. for phase in Phase:
  29. if phase in [
  30. Phase.PRE_TRAINING,
  31. Phase.TRAIN_EPOCH_START,
  32. Phase.TRAIN_EPOCH_END,
  33. Phase.VALIDATION_EPOCH_END,
  34. Phase.VALIDATION_END_BEST_EPOCH,
  35. Phase.POST_TRAINING,
  36. ]:
  37. phase_callbacks.append(
  38. ContextMethodsCheckerCallback(
  39. phase=phase,
  40. accessible_method_names=["get_net", "set_net", "set_ckpt_best_name", "reset_best_metric", "validate_epoch"],
  41. non_accessible_method_names=[],
  42. )
  43. )
  44. else:
  45. phase_callbacks.append(
  46. ContextMethodsCheckerCallback(
  47. phase=phase,
  48. non_accessible_method_names=["get_net", "set_net", "set_ckpt_best_name", "reset_best_metric", "validate_epoch", "set_ema"],
  49. accessible_method_names=[],
  50. )
  51. )
  52. train_params = {
  53. "max_epochs": 1,
  54. "lr_updates": [],
  55. "lr_decay_factor": 0.1,
  56. "lr_mode": "step",
  57. "lr_warmup_epochs": 0,
  58. "initial_lr": 1,
  59. "loss": "cross_entropy",
  60. "optimizer": "SGD",
  61. "criterion_params": {},
  62. "optimizer_params": {"weight_decay": 1e-4, "momentum": 0.9},
  63. "train_metrics_list": [Accuracy()],
  64. "valid_metrics_list": [Accuracy()],
  65. "metric_to_watch": "Accuracy",
  66. "greater_metric_to_watch_is_better": True,
  67. "ema": False,
  68. "phase_callbacks": phase_callbacks,
  69. }
  70. trainer.train(
  71. model=net,
  72. training_params=train_params,
  73. train_loader=classification_test_dataloader(batch_size=4),
  74. valid_loader=classification_test_dataloader(batch_size=4),
  75. )
  76. for phase_callback in phase_callbacks:
  77. if isinstance(phase_callback, ContextMethodsCheckerCallback):
  78. self.assertTrue(phase_callback.result)
  79. if __name__ == "__main__":
  80. unittest.main()
Tip!

Press p or to see the previous file or, n or to see the next file

Comments

Loading...