1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
|
- import unittest
- from super_gradients.training import Trainer
- from super_gradients.training.dataloaders.dataloaders import classification_test_dataloader
- from super_gradients.training.metrics import Accuracy
- from super_gradients.training.models import LeNet
- from super_gradients.training.utils.callbacks import Phase, PhaseCallback, PhaseContext
- class ContextMethodsCheckerCallback(PhaseCallback):
- """
- Callback for checking that at a certain phase specific Trainer methods are accessible.
- """
- def __init__(self, phase: Phase, accessible_method_names: list, non_accessible_method_names: list):
- super(ContextMethodsCheckerCallback, self).__init__(phase)
- self.accessible_method_names = accessible_method_names
- self.non_accessible_method_names = non_accessible_method_names
- self.result = True
- def __call__(self, context: PhaseContext):
- for accessible_method_name in self.accessible_method_names:
- if not hasattr(context.context_methods, accessible_method_name):
- self.result = False
- for non_accessible_method_name in self.non_accessible_method_names:
- if hasattr(context.context_methods, non_accessible_method_name):
- self.result = False
- class ContextMethodsTest(unittest.TestCase):
- def test_access_to_methods_by_phase(self):
- net = LeNet()
- trainer = Trainer("test_access_to_methods_by_phase")
- phase_callbacks = []
- for phase in Phase:
- if phase in [
- Phase.PRE_TRAINING,
- Phase.TRAIN_EPOCH_START,
- Phase.TRAIN_EPOCH_END,
- Phase.VALIDATION_EPOCH_END,
- Phase.VALIDATION_END_BEST_EPOCH,
- Phase.POST_TRAINING,
- ]:
- phase_callbacks.append(
- ContextMethodsCheckerCallback(
- phase=phase,
- accessible_method_names=["get_net", "set_net", "set_ckpt_best_name", "reset_best_metric", "validate_epoch"],
- non_accessible_method_names=[],
- )
- )
- else:
- phase_callbacks.append(
- ContextMethodsCheckerCallback(
- phase=phase,
- non_accessible_method_names=["get_net", "set_net", "set_ckpt_best_name", "reset_best_metric", "validate_epoch", "set_ema"],
- accessible_method_names=[],
- )
- )
- train_params = {
- "max_epochs": 1,
- "lr_updates": [],
- "lr_decay_factor": 0.1,
- "lr_mode": "step",
- "lr_warmup_epochs": 0,
- "initial_lr": 1,
- "loss": "cross_entropy",
- "optimizer": "SGD",
- "criterion_params": {},
- "optimizer_params": {"weight_decay": 1e-4, "momentum": 0.9},
- "train_metrics_list": [Accuracy()],
- "valid_metrics_list": [Accuracy()],
- "metric_to_watch": "Accuracy",
- "greater_metric_to_watch_is_better": True,
- "ema": False,
- "phase_callbacks": phase_callbacks,
- }
- trainer.train(
- model=net,
- training_params=train_params,
- train_loader=classification_test_dataloader(batch_size=4),
- valid_loader=classification_test_dataloader(batch_size=4),
- )
- for phase_callback in phase_callbacks:
- if isinstance(phase_callback, ContextMethodsCheckerCallback):
- self.assertTrue(phase_callback.result)
- if __name__ == "__main__":
- unittest.main()
|