Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

deci_lab_export_test.py 3.7 KB

You have to be logged in to leave a comment. Sign In
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
  1. import unittest
  2. from super_gradients import Trainer, \
  3. ClassificationTestDatasetInterface
  4. from super_gradients.training.metrics import Accuracy, Top5
  5. from super_gradients.training.models import ResNet18
  6. from torch.optim import SGD
  7. from super_gradients.training.utils.callbacks import DeciLabUploadCallback, ModelConversionCheckCallback
  8. from deci_lab_client.models import Metric, QuantizationLevel, ModelMetadata, OptimizationRequestForm
  9. class DeciLabUploadTest(unittest.TestCase):
  10. def setUp(self) -> None:
  11. self.trainer = Trainer("deci_lab_export_test_model", model_checkpoints_location='local')
  12. dataset = ClassificationTestDatasetInterface(dataset_params={"batch_size": 10})
  13. self.trainer.connect_dataset_interface(dataset)
  14. def test_train_with_deci_lab_integration(self):
  15. model_meta_data = ModelMetadata(name='model_for_deci_lab_upload_test',
  16. primary_batch_size=1,
  17. architecture='Resnet18',
  18. framework='pytorch',
  19. dl_task='classification',
  20. input_dimensions=(3, 224, 224),
  21. primary_hardware='XEON',
  22. dataset_name='imagenet',
  23. description='ResNet18 ONNX deci.ai Test',
  24. tags=['imagenet',
  25. 'resnet18'])
  26. optimization_request_form = OptimizationRequestForm(target_hardware='XEON',
  27. target_batch_size=1,
  28. target_metric=Metric.LATENCY,
  29. optimize_model_size=True,
  30. quantization_level=QuantizationLevel.FP16,
  31. optimize_autonac=True)
  32. model_conversion_callback = ModelConversionCheckCallback(model_meta_data=model_meta_data)
  33. deci_lab_callback = DeciLabUploadCallback(email="trainer-tester@testcase.ai",
  34. model_meta_data=model_meta_data,
  35. optimization_request_form=optimization_request_form)
  36. net = ResNet18(num_classes=5, arch_params={})
  37. train_params = {"max_epochs": 2, "lr_updates": [1], "lr_decay_factor": 0.1, "lr_mode": "step",
  38. "lr_warmup_epochs": 0, "initial_lr": 0.1, "loss": "cross_entropy", "optimizer": self.optimizer,
  39. "criterion_params": {},
  40. "train_metrics_list": [Accuracy(), Top5()], "valid_metrics_list": [Accuracy(), Top5()],
  41. "loss_logging_items_names": ["Loss"], "metric_to_watch": "Accuracy",
  42. "greater_metric_to_watch_is_better": True,
  43. "phase_callbacks": [model_conversion_callback, deci_lab_callback]}
  44. self.optimizer = SGD(params=net.parameters(), lr=0.1)
  45. self.trainer.train(model=net, training_params=train_params)
  46. # CLEANUP
  47. # FIXME: MISUSE OF DECI_PLATFROM CALLBACK:
  48. # https://github.com/Deci-AI/deci_trainer/pull/106/files/2ed12b78adc9886faabad9d952969ff5479e9237#r708092979
  49. new_model_from_repo_name = model_meta_data.name + '_1_1'
  50. your_model_from_repo = deci_lab_callback.platform_client.get_model_by_name(name=new_model_from_repo_name).data
  51. deci_lab_callback.platform_client.delete_model(your_model_from_repo.model_id)
  52. if __name__ == '__main__':
  53. unittest.main()
Tip!

Press p or to see the previous file or, n or to see the next file

Comments

Loading...