Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

coded_qat_launch_test.py 5.2 KB

You have to be logged in to leave a comment. Sign In
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
  1. import unittest
  2. from super_gradients.import_utils import import_pytorch_quantization_or_install
  3. from torchvision.transforms import Normalize, ToTensor, RandomHorizontalFlip, RandomCrop
  4. from super_gradients import Trainer
  5. from super_gradients.training.dataloaders.dataloaders import cifar10_train, cifar10_val
  6. from super_gradients.training.metrics import Accuracy, Top5
  7. from super_gradients.training.models import ResNet18
  8. from super_gradients.training.utils.quantization.tensorrt.functional import modify_params_for_qat
  9. import_pytorch_quantization_or_install()
  10. class CodedQATLuanchTest(unittest.TestCase):
  11. def test_qat_launch(self):
  12. trainer = Trainer("test_launch_qat_with_minimal_changes")
  13. net = ResNet18(num_classes=10, arch_params={})
  14. train_params = {
  15. "max_epochs": 10,
  16. "lr_decay_factor": 0.1,
  17. "lr_warmup_epochs": 0,
  18. "initial_lr": 0.1,
  19. "loss": "CrossEntropyLoss",
  20. "optimizer": "SGD",
  21. "criterion_params": {},
  22. "optimizer_params": {"weight_decay": 1e-4, "momentum": 0.9},
  23. "train_metrics_list": [Accuracy(), Top5()],
  24. "valid_metrics_list": [Accuracy(), Top5()],
  25. "metric_to_watch": "Accuracy",
  26. "greater_metric_to_watch_is_better": True,
  27. "ema": True,
  28. }
  29. train_dataset_params = {
  30. "transforms": [
  31. RandomCrop(size=32, padding=4),
  32. RandomHorizontalFlip(),
  33. ToTensor(),
  34. Normalize(mean=[0.4914, 0.4822, 0.4465], std=[0.2023, 0.1994, 0.2010]),
  35. ]
  36. }
  37. train_dataloader_params = {"batch_size": 256}
  38. val_dataset_params = {"transforms": [ToTensor(), Normalize(mean=[0.4914, 0.4822, 0.4465], std=[0.2023, 0.1994, 0.2010])]}
  39. val_dataloader_params = {"batch_size": 256}
  40. train_loader = cifar10_train(dataset_params=train_dataset_params, dataloader_params=train_dataloader_params)
  41. valid_loader = cifar10_val(dataset_params=val_dataset_params, dataloader_params=val_dataloader_params)
  42. trainer.train(
  43. model=net,
  44. training_params=train_params,
  45. train_loader=train_loader,
  46. valid_loader=valid_loader,
  47. )
  48. train_params, train_dataset_params, val_dataset_params, train_dataloader_params, val_dataloader_params = modify_params_for_qat(
  49. train_params, train_dataset_params, val_dataset_params, train_dataloader_params, val_dataloader_params
  50. )
  51. train_loader = cifar10_train(dataset_params=train_dataset_params, dataloader_params=train_dataloader_params)
  52. valid_loader = cifar10_val(dataset_params=val_dataset_params, dataloader_params=val_dataloader_params)
  53. trainer.qat(
  54. model=net,
  55. training_params=train_params,
  56. train_loader=train_loader,
  57. valid_loader=valid_loader,
  58. calib_loader=train_loader,
  59. )
  60. def test_ptq_launch(self):
  61. trainer = Trainer("test_launch_ptq_with_minimal_changes")
  62. net = ResNet18(num_classes=10, arch_params={})
  63. train_params = {
  64. "max_epochs": 10,
  65. "lr_decay_factor": 0.1,
  66. "lr_warmup_epochs": 0,
  67. "initial_lr": 0.1,
  68. "loss": "CrossEntropyLoss",
  69. "optimizer": "SGD",
  70. "criterion_params": {},
  71. "optimizer_params": {"weight_decay": 1e-4, "momentum": 0.9},
  72. "train_metrics_list": [Accuracy(), Top5()],
  73. "valid_metrics_list": [Accuracy(), Top5()],
  74. "metric_to_watch": "Accuracy",
  75. "greater_metric_to_watch_is_better": True,
  76. "ema": True,
  77. }
  78. train_dataset_params = {
  79. "transforms": [
  80. RandomCrop(size=32, padding=4),
  81. RandomHorizontalFlip(),
  82. ToTensor(),
  83. Normalize(mean=[0.4914, 0.4822, 0.4465], std=[0.2023, 0.1994, 0.2010]),
  84. ]
  85. }
  86. train_dataloader_params = {"batch_size": 256}
  87. val_dataset_params = {"transforms": [ToTensor(), Normalize(mean=[0.4914, 0.4822, 0.4465], std=[0.2023, 0.1994, 0.2010])]}
  88. val_dataloader_params = {"batch_size": 256}
  89. train_loader = cifar10_train(dataset_params=train_dataset_params, dataloader_params=train_dataloader_params)
  90. valid_loader = cifar10_val(dataset_params=val_dataset_params, dataloader_params=val_dataloader_params)
  91. trainer.train(
  92. model=net,
  93. training_params=train_params,
  94. train_loader=train_loader,
  95. valid_loader=valid_loader,
  96. )
  97. train_params, train_dataset_params, val_dataset_params, train_dataloader_params, val_dataloader_params = modify_params_for_qat(
  98. train_params, train_dataset_params, val_dataset_params, train_dataloader_params, val_dataloader_params
  99. )
  100. train_loader = cifar10_train(dataset_params=train_dataset_params, dataloader_params=train_dataloader_params)
  101. valid_loader = cifar10_val(dataset_params=val_dataset_params, dataloader_params=val_dataloader_params)
  102. trainer.ptq(model=net, valid_loader=valid_loader, calib_loader=train_loader, valid_metrics_list=train_params["valid_metrics_list"])
  103. if __name__ == "__main__":
  104. unittest.main()
Tip!

Press p or to see the previous file or, n or to see the next file

Comments

Loading...