Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

detection_dataset_test.py 5.5 KB

You have to be logged in to leave a comment. Sign In
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
  1. import unittest
  2. from pathlib import Path
  3. from typing import Dict
  4. from torch.utils.data import DataLoader
  5. from super_gradients.training.dataloaders import coco2017_train_yolo_nas, get_data_loader
  6. from super_gradients.training.datasets import COCODetectionDataset
  7. from super_gradients.training.datasets.data_formats.default_formats import LABEL_CXCYWH
  8. from super_gradients.training.exceptions.dataset_exceptions import DatasetValidationException, ParameterMismatchException
  9. from super_gradients.training.transforms import DetectionMosaic, DetectionTargetsFormatTransform, DetectionPaddedRescale
  10. class DummyCOCODetectionDatasetInheritor(COCODetectionDataset):
  11. def __init__(self, json_file: str, subdir: str, dummy_field: int, *args, **kwargs):
  12. super(DummyCOCODetectionDatasetInheritor, self).__init__(json_file=json_file, subdir=subdir, *args, **kwargs)
  13. self.dummy_field = dummy_field
  14. def dummy_coco2017_inheritor_train_yolo_nas(dataset_params: Dict = None, dataloader_params: Dict = None) -> DataLoader:
  15. return get_data_loader(
  16. config_name="coco_detection_yolo_nas_dataset_params",
  17. dataset_cls=DummyCOCODetectionDatasetInheritor,
  18. train=True,
  19. dataset_params=dataset_params,
  20. dataloader_params=dataloader_params,
  21. )
  22. class DetectionDatasetTest(unittest.TestCase):
  23. def setUp(self) -> None:
  24. self.mini_coco_data_dir = str(Path(__file__).parent.parent / "data" / "tinycoco")
  25. def test_normal_coco_dataset_creation(self):
  26. train_dataset_params = {
  27. "data_dir": self.mini_coco_data_dir,
  28. "subdir": "images/train2017",
  29. "json_file": "instances_train2017.json",
  30. "cache": False,
  31. "input_dim": [512, 512],
  32. }
  33. COCODetectionDataset(**train_dataset_params)
  34. def test_coco_dataset_creation_with_wrong_classes(self):
  35. train_dataset_params = {
  36. "data_dir": self.mini_coco_data_dir,
  37. "subdir": "images/train2017",
  38. "json_file": "instances_train2017.json",
  39. "cache": False,
  40. "input_dim": [512, 512],
  41. "all_classes_list": ["One", "Two", "Three"],
  42. }
  43. with self.assertRaises(DatasetValidationException):
  44. COCODetectionDataset(**train_dataset_params)
  45. def test_coco_dataset_creation_with_subset_classes(self):
  46. train_dataset_params = {
  47. "data_dir": self.mini_coco_data_dir,
  48. "subdir": "images/train2017",
  49. "json_file": "instances_train2017.json",
  50. "cache": False,
  51. "input_dim": [512, 512],
  52. "all_classes_list": ["car", "person", "bird"],
  53. }
  54. with self.assertRaises(ParameterMismatchException):
  55. COCODetectionDataset(**train_dataset_params)
  56. def test_coco_detection_dataset_override_image_size(self):
  57. train_dataset_params = {
  58. "data_dir": self.mini_coco_data_dir,
  59. "input_dim": [512, 512],
  60. }
  61. train_dataloader_params = {"num_workers": 0}
  62. dataloader = coco2017_train_yolo_nas(dataset_params=train_dataset_params, dataloader_params=train_dataloader_params)
  63. batch = next(iter(dataloader))
  64. print(batch[0].shape)
  65. self.assertEqual(batch[0].shape[2], 512)
  66. self.assertEqual(batch[0].shape[3], 512)
  67. def test_coco_detection_dataset_override_image_size_single_scalar(self):
  68. train_dataset_params = {
  69. "data_dir": self.mini_coco_data_dir,
  70. "input_dim": 384,
  71. }
  72. train_dataloader_params = {"num_workers": 0}
  73. dataloader = coco2017_train_yolo_nas(dataset_params=train_dataset_params, dataloader_params=train_dataloader_params)
  74. batch = next(iter(dataloader))
  75. print(batch[0].shape)
  76. self.assertEqual(batch[0].shape[2], 384)
  77. self.assertEqual(batch[0].shape[3], 384)
  78. def test_coco_detection_dataset_override_with_objects(self):
  79. train_dataset_params = {
  80. "data_dir": self.mini_coco_data_dir,
  81. "input_dim": 384,
  82. "transforms": [
  83. DetectionMosaic(input_dim=384),
  84. DetectionPaddedRescale(input_dim=384, max_targets=10),
  85. DetectionTargetsFormatTransform(max_targets=10, output_format=LABEL_CXCYWH),
  86. ],
  87. }
  88. train_dataloader_params = {"num_workers": 0}
  89. dataloader = coco2017_train_yolo_nas(dataset_params=train_dataset_params, dataloader_params=train_dataloader_params)
  90. batch = next(iter(dataloader))
  91. print(batch[0].shape)
  92. self.assertEqual(batch[0].shape[2], 384)
  93. self.assertEqual(batch[0].shape[3], 384)
  94. def test_coco_detection_dataset_override_with_new_entries(self):
  95. train_dataset_params = {
  96. "data_dir": self.mini_coco_data_dir,
  97. "input_dim": 384,
  98. "transforms": [
  99. DetectionMosaic(input_dim=384),
  100. DetectionPaddedRescale(input_dim=384, max_targets=10),
  101. DetectionTargetsFormatTransform(max_targets=10, output_format=LABEL_CXCYWH),
  102. ],
  103. "dummy_field": 10,
  104. }
  105. train_dataloader_params = {"num_workers": 0}
  106. dataloader = dummy_coco2017_inheritor_train_yolo_nas(dataset_params=train_dataset_params, dataloader_params=train_dataloader_params)
  107. batch = next(iter(dataloader))
  108. print(batch[0].shape)
  109. self.assertEqual(batch[0].shape[2], 384)
  110. self.assertEqual(batch[0].shape[3], 384)
  111. self.assertEqual(dataloader.dataset.dummy_field, 10)
  112. if __name__ == "__main__":
  113. unittest.main()
Tip!

Press p or to see the previous file or, n or to see the next file

Comments

Loading...