1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
|
- import os
- import unittest
- from pathlib import Path
- from super_gradients import Trainer
- from super_gradients.training import models
- from super_gradients.training.datasets import COCODetectionDataset
- from super_gradients.training.metrics import DetectionMetrics
- from super_gradients.training.models import YoloPostPredictionCallback
- from super_gradients.training.processing import ReverseImageChannels, DetectionLongestMaxSizeRescale, DetectionBottomRightPadding, ImagePermute
- from super_gradients.training.utils.detection_utils import DetectionCollateFN, CrowdDetectionCollateFN
- from super_gradients.training import dataloaders
- class PreprocessingUnitTest(unittest.TestCase):
- def setUp(self) -> None:
- self.mini_coco_data_dir = str(Path(__file__).parent.parent / "data" / "tinycoco")
- def test_getting_preprocessing_params(self):
- expected_image_processor = {
- "ComposeProcessing": {
- "processings": [
- "ReverseImageChannels",
- {"DetectionLongestMaxSizeRescale": {"output_shape": (512, 512)}},
- {"DetectionLongestMaxSizeRescale": {"output_shape": (512, 512)}},
- {"DetectionBottomRightPadding": {"output_shape": (512, 512), "pad_value": 114}},
- {"ImagePermute": {"permutation": (2, 0, 1)}},
- ]
- }
- }
- train_dataset_params = {
- "data_dir": self.mini_coco_data_dir,
- "subdir": "images/train2017",
- "json_file": "instances_train2017.json",
- "cache": False,
- "input_dim": [512, 512],
- "transforms": [
- {"DetectionPaddedRescale": {"input_dim": [512, 512]}},
- {"DetectionTargetsFormatTransform": {"input_dim": [512, 512], "output_format": "LABEL_CXCYWH"}},
- ],
- }
- dataset = COCODetectionDataset(**train_dataset_params)
- preprocessing_params = dataset.get_dataset_preprocessing_params()
- self.assertEqual(len(preprocessing_params["class_names"]), 80)
- self.assertEqual(preprocessing_params["image_processor"], expected_image_processor)
- self.assertEqual(preprocessing_params["iou"], 0.65)
- self.assertEqual(preprocessing_params["conf"], 0.5)
- def test_setting_preprocessing_params_from_validation_set(self):
- train_dataset_params = {
- "data_dir": self.mini_coco_data_dir,
- "subdir": "images/train2017",
- "json_file": "instances_train2017.json",
- "cache": False,
- "input_dim": [329, 320],
- "transforms": [
- {"DetectionPaddedRescale": {"input_dim": [512, 512]}},
- {"DetectionTargetsFormatTransform": {"input_dim": [512, 512], "output_format": "LABEL_CXCYWH"}},
- ],
- "with_crowd": False,
- }
- val_dataset_params = {
- "data_dir": self.mini_coco_data_dir,
- "subdir": "images/val2017",
- "json_file": "instances_val2017.json",
- "cache": False,
- "input_dim": [329, 320],
- "transforms": [
- {"DetectionPaddedRescale": {"input_dim": [512, 512]}},
- {"DetectionTargetsFormatTransform": {"input_dim": [512, 512], "output_format": "LABEL_CXCYWH"}},
- ],
- }
- trainset = COCODetectionDataset(**train_dataset_params)
- train_loader = dataloaders.get(dataset=trainset, dataloader_params={"collate_fn": DetectionCollateFN()})
- valset = COCODetectionDataset(**val_dataset_params)
- valid_loader = dataloaders.get(dataset=valset, dataloader_params={"collate_fn": CrowdDetectionCollateFN()})
- trainer = Trainer("test_setting_preprocessing_params_from_validation_set")
- detection_train_params_yolox = {
- "max_epochs": 1,
- "lr_mode": "cosine",
- "cosine_final_lr_ratio": 0.05,
- "warmup_bias_lr": 0.0,
- "warmup_momentum": 0.9,
- "initial_lr": 0.02,
- "loss": "yolox_loss",
- "criterion_params": {"strides": [8, 16, 32], "num_classes": 80}, # output strides of all yolo outputs
- "train_metrics_list": [],
- "valid_metrics_list": [DetectionMetrics(post_prediction_callback=YoloPostPredictionCallback(), normalize_targets=True, num_cls=5)],
- "metric_to_watch": "mAP@0.50:0.95",
- "greater_metric_to_watch_is_better": True,
- "average_best_models": False,
- }
- model = models.get("yolox_s", num_classes=80)
- trainer.train(model=model, training_params=detection_train_params_yolox, train_loader=train_loader, valid_loader=valid_loader)
- processing_list = model._image_processor.processings
- self.assertTrue(isinstance(processing_list[0], ReverseImageChannels))
- self.assertTrue(isinstance(processing_list[1], DetectionLongestMaxSizeRescale))
- self.assertTrue(isinstance(processing_list[2], DetectionLongestMaxSizeRescale))
- self.assertTrue(isinstance(processing_list[3], DetectionBottomRightPadding))
- self.assertTrue(isinstance(processing_list[4], ImagePermute))
- self.assertTrue(len(processing_list), 5)
- self.assertEqual(model._default_nms_iou, 0.65)
- self.assertEqual(model._default_nms_conf, 0.5)
- def test_setting_preprocessing_params_from_checkpoint(self):
- model = models.get("yolox_s", num_classes=80)
- self.assertTrue(model._image_processor is None)
- self.assertTrue(model._default_nms_iou is None)
- self.assertTrue(model._default_nms_conf is None)
- self.assertTrue(model._class_names is None)
- train_dataset_params = {
- "data_dir": self.mini_coco_data_dir,
- "subdir": "images/train2017",
- "json_file": "instances_train2017.json",
- "cache": False,
- "input_dim": [329, 320],
- "transforms": [
- {"DetectionPaddedRescale": {"input_dim": [512, 512]}},
- {"DetectionTargetsFormatTransform": {"input_dim": [512, 512], "output_format": "LABEL_CXCYWH"}},
- ],
- "with_crowd": False,
- }
- val_dataset_params = {
- "data_dir": self.mini_coco_data_dir,
- "subdir": "images/val2017",
- "json_file": "instances_val2017.json",
- "cache": False,
- "input_dim": [329, 320],
- "transforms": [
- {"DetectionPaddedRescale": {"input_dim": [512, 512]}},
- {"DetectionTargetsFormatTransform": {"input_dim": [512, 512], "output_format": "LABEL_CXCYWH"}},
- ],
- }
- trainset = COCODetectionDataset(**train_dataset_params)
- train_loader = dataloaders.get(dataset=trainset, dataloader_params={"collate_fn": DetectionCollateFN()})
- valset = COCODetectionDataset(**val_dataset_params)
- valid_loader = dataloaders.get(dataset=valset, dataloader_params={"collate_fn": CrowdDetectionCollateFN()})
- trainer = Trainer("save_ckpt_for")
- detection_train_params_yolox = {
- "max_epochs": 1,
- "lr_mode": "cosine",
- "cosine_final_lr_ratio": 0.05,
- "warmup_bias_lr": 0.0,
- "warmup_momentum": 0.9,
- "initial_lr": 0.02,
- "loss": "yolox_loss",
- "criterion_params": {"strides": [8, 16, 32], "num_classes": 80}, # output strides of all yolo outputs
- "train_metrics_list": [],
- "valid_metrics_list": [DetectionMetrics(post_prediction_callback=YoloPostPredictionCallback(), normalize_targets=True, num_cls=5)],
- "metric_to_watch": "mAP@0.50:0.95",
- "greater_metric_to_watch_is_better": True,
- "average_best_models": False,
- }
- trainer.train(model=model, training_params=detection_train_params_yolox, train_loader=train_loader, valid_loader=valid_loader)
- model = models.get("yolox_s", num_classes=80, checkpoint_path=os.path.join(trainer.checkpoints_dir_path, "ckpt_best.pth"))
- processing_list = model._image_processor.processings
- self.assertTrue(isinstance(processing_list[0], ReverseImageChannels))
- self.assertTrue(isinstance(processing_list[1], DetectionLongestMaxSizeRescale))
- self.assertTrue(isinstance(processing_list[2], DetectionLongestMaxSizeRescale))
- self.assertTrue(isinstance(processing_list[3], DetectionBottomRightPadding))
- self.assertTrue(isinstance(processing_list[4], ImagePermute))
- self.assertTrue(len(processing_list), 5)
- self.assertEqual(model._default_nms_iou, 0.65)
- self.assertEqual(model._default_nms_conf, 0.5)
- if __name__ == "__main__":
- unittest.main()
|