Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

test_without_train_test.py 4.4 KB

You have to be logged in to leave a comment. Sign In
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
  1. import shutil
  2. import unittest
  3. import os
  4. from super_gradients import Trainer, \
  5. ClassificationTestDatasetInterface, \
  6. SegmentationTestDatasetInterface, DetectionTestDatasetInterface
  7. from super_gradients.training.metrics import Accuracy, Top5
  8. from super_gradients.training import MultiGPUMode
  9. from super_gradients.training.models.detection_models.yolo_base import YoloPostPredictionCallback
  10. from super_gradients.training.utils.detection_utils import DetectionCollateFN
  11. from super_gradients.training.metrics.detection_metrics import DetectionMetrics
  12. from super_gradients.training.metrics.segmentation_metrics import PixelAccuracy, IoU
  13. class TestWithoutTrainTest(unittest.TestCase):
  14. @classmethod
  15. def setUp(cls):
  16. # NAMES FOR THE EXPERIMENTS TO LATER DELETE
  17. cls.folder_names = ['test_classification_model', 'test_detection_model', 'test_segmentation_model']
  18. @classmethod
  19. def tearDownClass(cls) -> None:
  20. # ERASE ALL THE FOLDERS THAT WERE CREATED DURING THIS TEST
  21. for folder in cls.folder_names:
  22. if os.path.isdir(os.path.join('checkpoints', folder)):
  23. shutil.rmtree(os.path.join('checkpoints', folder))
  24. @staticmethod
  25. def get_classification_trainer(name=''):
  26. trainer = Trainer(name, model_checkpoints_location='local')
  27. dataset_params = {"batch_size": 4}
  28. dataset = ClassificationTestDatasetInterface(dataset_params=dataset_params)
  29. trainer.connect_dataset_interface(dataset)
  30. trainer.build_model("resnet18_cifar")
  31. return trainer
  32. @staticmethod
  33. def get_detection_trainer(name=''):
  34. dataset_params = {"batch_size": 4,
  35. "test_batch_size": 4,
  36. "dataset_dir": "/data/coco/",
  37. "s3_link": None,
  38. "image_size": 320,
  39. "test_collate_fn": DetectionCollateFN(),
  40. "train_collate_fn": DetectionCollateFN(),
  41. }
  42. trainer = Trainer(name, model_checkpoints_location='local',
  43. multi_gpu=MultiGPUMode.OFF,
  44. post_prediction_callback=YoloPostPredictionCallback())
  45. dataset_interface = DetectionTestDatasetInterface(dataset_params=dataset_params)
  46. trainer.connect_dataset_interface(dataset_interface, data_loader_num_workers=4)
  47. trainer.build_model('yolox_s')
  48. return trainer
  49. @staticmethod
  50. def get_segmentation_trainer(name=''):
  51. shelfnet_lw_arch_params = {"num_classes": 5, "load_checkpoint": False}
  52. trainer = Trainer(name, model_checkpoints_location='local', multi_gpu=False)
  53. dataset_interface = SegmentationTestDatasetInterface()
  54. trainer.connect_dataset_interface(dataset_interface, data_loader_num_workers=8)
  55. trainer.build_model('shelfnet34_lw', arch_params=shelfnet_lw_arch_params)
  56. return trainer
  57. def test_test_without_train(self):
  58. trainer = self.get_classification_trainer(self.folder_names[0])
  59. assert isinstance(trainer.test(silent_mode=True, test_metrics_list=[Accuracy(), Top5()]), tuple)
  60. trainer = self.get_detection_trainer(self.folder_names[1])
  61. test_metrics = [DetectionMetrics(post_prediction_callback=trainer.post_prediction_callback, num_cls=5)]
  62. assert isinstance(trainer.test(silent_mode=True, test_metrics_list=test_metrics), tuple)
  63. trainer = self.get_segmentation_trainer(self.folder_names[2])
  64. assert isinstance(trainer.test(silent_mode=True, test_metrics_list=[IoU(21), PixelAccuracy()]), tuple)
  65. def test_test_on_valid_loader_without_train(self):
  66. trainer = self.get_classification_trainer(self.folder_names[0])
  67. assert isinstance(trainer.test(test_loader=trainer.valid_loader, silent_mode=True, test_metrics_list=[Accuracy(), Top5()]), tuple)
  68. trainer = self.get_detection_trainer(self.folder_names[1])
  69. test_metrics = [DetectionMetrics(post_prediction_callback=trainer.post_prediction_callback, num_cls=5)]
  70. assert isinstance(trainer.test(test_loader=trainer.valid_loader, silent_mode=True, test_metrics_list=test_metrics), tuple)
  71. model = self.get_segmentation_trainer(self.folder_names[2])
  72. assert isinstance(model.test(test_loader=model.valid_loader, silent_mode=True, test_metrics_list=[IoU(21), PixelAccuracy()]), tuple)
  73. if __name__ == '__main__':
  74. unittest.main()
Tip!

Press p or to see the previous file or, n or to see the next file

Comments

Loading...