Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

Makefile 7.3 KB

You have to be logged in to leave a comment. Sign In
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
  1. unit_tests:
  2. python -m unittest tests/deci_core_unit_test_suite_runner.py
  3. integration_tests:
  4. python -m unittest tests/deci_core_integration_test_suite_runner.py
  5. yolo_nas_integration_tests:
  6. python -m unittest tests/integration_tests/yolo_nas_integration_test.py
  7. recipe_accuracy_tests:
  8. python src/super_gradients/train_from_recipe.py --config-name=coco2017_pose_dekr_w32_no_dc experiment_name=shortened_coco2017_pose_dekr_w32_ap_test epochs=1 batch_size=4 val_batch_size=8 training_hyperparams.lr_warmup_steps=0 training_hyperparams.average_best_models=False training_hyperparams.max_train_batches=1000 training_hyperparams.max_valid_batches=100 multi_gpu=DDP num_gpus=4
  9. python src/super_gradients/train_from_recipe.py --config-name=cifar10_resnet experiment_name=shortened_cifar10_resnet_accuracy_test epochs=100 training_hyperparams.average_best_models=False multi_gpu=DDP num_gpus=4
  10. python src/super_gradients/train_from_recipe.py --config-name=coco2017_yolox experiment_name=shortened_coco2017_yolox_n_map_test epochs=10 architecture=yolox_n training_hyperparams.loss=YoloXFastDetectionLoss training_hyperparams.average_best_models=False multi_gpu=DDP num_gpus=4
  11. python src/super_gradients/train_from_recipe.py --config-name=cityscapes_regseg48 experiment_name=shortened_cityscapes_regseg48_iou_test epochs=10 training_hyperparams.average_best_models=False multi_gpu=DDP num_gpus=4
  12. python src/super_gradients/examples/convert_recipe_example/convert_recipe_example.py --config-name=cifar10_conversion_params experiment_name=shortened_cifar10_resnet_accuracy_test
  13. coverage run --source=super_gradients -m unittest tests/deci_core_recipe_test_suite_runner.py
  14. sweeper_test:
  15. python -m super_gradients.train_from_recipe -m --config-name=cifar10_resnet \
  16. ckpt_root_dir=$$PWD \
  17. experiment_name=sweep_cifar10 \
  18. training_hyperparams.max_epochs=1 \
  19. training_hyperparams.initial_lr=0.001,0.01
  20. # Make sure that experiment_dir includes $$expected_num_dir subdirectories. If not, fail
  21. subdir_count=$$(find "$$PWD/sweep_cifar10" -mindepth 1 -maxdepth 1 -type d | wc -l); \
  22. if [ "$$subdir_count" -ne 2 ]; then \
  23. echo "Error: $$PWD/sweep_cifar10 should include 2 subdirectories but includes $$subdir_count."; \
  24. exit 1; \
  25. fi
  26. # Here you define a list of notebooks we want to execute and convert to markdown files
  27. # NOTEBOOKS = hellomake.ipynb hellofunc.ipynb helloclass.ipynb
  28. NOTEBOOKS = src/super_gradients/examples/model_export/models_export.ipynb
  29. # This Makefile target runs notebooks listed below and converts them to markdown files in documentation/source/
  30. run_and_convert_notebooks_to_docs: $(NOTEBOOKS)
  31. jupyter nbconvert --to markdown --output-dir="documentation/source/" --execute $@
  32. # This Makefile target runs notebooks listed below and converts them to markdown files in documentation/source/
  33. check_notebooks_version_match: $(NOTEBOOKS)
  34. python tests/verify_notebook_version.py $@
  35. WANDB_PARAMS = training_hyperparams.sg_logger=wandb_sg_logger +training_hyperparams.sg_logger_params.api_server=https://wandb.research.deci.ai +training_hyperparams.sg_logger_params.entity=super-gradients training_hyperparams.sg_logger_params.launch_tensorboard=false training_hyperparams.sg_logger_params.monitor_system=true +training_hyperparams.sg_logger_params.project_name=PoseEstimation training_hyperparams.sg_logger_params.save_checkpoints_remote=true training_hyperparams.sg_logger_params.save_logs_remote=true training_hyperparams.sg_logger_params.save_tensorboard_remote=false training_hyperparams.sg_logger_params.tb_files_user_prompt=false
  36. coco2017_yolo_nas_pose_s:
  37. python src/super_gradients/train_from_recipe.py --config-name=coco2017_yolo_nas_pose_s $(WANDB_PARAMS)
  38. coco2017_yolo_nas_pose_m:
  39. python src/super_gradients/train_from_recipe.py --config-name=coco2017_yolo_nas_pose_m $(WANDB_PARAMS)
  40. coco2017_yolo_nas_pose_m_resume:
  41. python src/super_gradients/train_from_recipe.py --config-name=coco2017_yolo_nas_pose_m $(WANDB_PARAMS) resume=True
  42. coco2017_yolo_nas_pose_l:
  43. python src/super_gradients/train_from_recipe.py --config-name=coco2017_yolo_nas_pose_l $(WANDB_PARAMS)
  44. coco2017_yolo_nas_pose_l_no_ema:
  45. python src/super_gradients/train_from_recipe.py --config-name=coco2017_yolo_nas_pose_l $(WANDB_PARAMS) training_hyperparams.ema=False
  46. coco2017_yolo_nas_pose_n:
  47. python src/super_gradients/train_from_recipe.py --config-name=coco2017_yolo_nas_pose_n $(WANDB_PARAMS)
  48. coco2017_yolo_nas_pose_n_resume:
  49. python src/super_gradients/train_from_recipe.py --config-name=coco2017_yolo_nas_pose_n $(WANDB_PARAMS) resume=True
  50. coco2017_yolo_nas_pose_l_resume:
  51. python src/super_gradients/train_from_recipe.py --config-name=coco2017_yolo_nas_pose_l $(WANDB_PARAMS) resume=True
  52. coco2017_pose_former_b2:
  53. python src/super_gradients/train_from_recipe.py --config-name=coco2017_former_pose_b2 $(WANDB_PARAMS)
  54. LOCAL_COCO_TRAINING_PARAMS = dataset_params.train_dataset_params.data_dir=/home/bloodaxe/data/coco2017 dataset_params.val_dataset_params.data_dir=/home/bloodaxe/data/coco2017 num_gpus=4 multi_gpu=DDP
  55. LOCAL_TRAINING_PARAMS = dataset_params.train_dataset_params.data_dir=/home/bloodaxe/data/crowdpose dataset_params.val_dataset_params.data_dir=/home/bloodaxe/data/crowdpose num_gpus=1 multi_gpu=Off
  56. crowdpose_yolo_nas_pose_s:
  57. # CUDA_VISIBLE_DEVICES=0 python src/super_gradients/train_from_recipe.py --config-name=crowdpose_yolo_nas_pose_s $(LOCAL_TRAINING_PARAMS) &
  58. # CUDA_VISIBLE_DEVICES=1 python src/super_gradients/train_from_recipe.py --config-name=crowdpose_yolo_nas_pose_s $(LOCAL_TRAINING_PARAMS) training_hyperparams.criterion_params.classification_loss_type=bce &
  59. # CUDA_VISIBLE_DEVICES=2 python src/super_gradients/train_from_recipe.py --config-name=crowdpose_yolo_nas_pose_s $(LOCAL_TRAINING_PARAMS) training_hyperparams.criterion_params.dfl_loss_weight=1.0 &
  60. # CUDA_VISIBLE_DEVICES=3 python src/super_gradients/train_from_recipe.py --config-name=crowdpose_yolo_nas_pose_s $(LOCAL_TRAINING_PARAMS) training_hyperparams.criterion_params.pose_cls_loss_weight=0.1 training_hyperparams.criterion_params.pose_reg_loss_weight=5.0 &
  61. CUDA_VISIBLE_DEVICES=0 python src/super_gradients/train_from_recipe.py --config-name=crowdpose_yolo_nas_pose_s $(LOCAL_TRAINING_PARAMS) training_hyperparams.criterion_params.pose_cls_loss_weight=0.10 training_hyperparams.criterion_params.pose_reg_loss_weight=5.0 training_hyperparams.criterion_params.dfl_loss_weight=1.0 &
  62. CUDA_VISIBLE_DEVICES=1 python src/super_gradients/train_from_recipe.py --config-name=crowdpose_yolo_nas_pose_s $(LOCAL_TRAINING_PARAMS) training_hyperparams.criterion_params.pose_cls_loss_weight=0.01 training_hyperparams.criterion_params.pose_reg_loss_weight=5.0 training_hyperparams.criterion_params.dfl_loss_weight=1.0 &
  63. CUDA_VISIBLE_DEVICES=2 python src/super_gradients/train_from_recipe.py --config-name=crowdpose_yolo_nas_pose_s $(LOCAL_TRAINING_PARAMS) training_hyperparams.criterion_params.pose_cls_loss_weight=0.01 training_hyperparams.criterion_params.pose_reg_loss_weight=1.0 training_hyperparams.criterion_params.dfl_loss_weight=2.5 &
  64. CUDA_VISIBLE_DEVICES=3 python src/super_gradients/train_from_recipe.py --config-name=crowdpose_yolo_nas_pose_s $(LOCAL_TRAINING_PARAMS) training_hyperparams.criterion_params.pose_cls_loss_weight=0.10 training_hyperparams.criterion_params.pose_reg_loss_weight=5.0 training_hyperparams.criterion_params.dfl_loss_weight=1.0 training_hyperparams.criterion_params.classification_loss_type=bce &
Tip!

Press p or to see the previous file or, n or to see the next file

Comments

Loading...