Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

welcome.md.txt 24 KB

You have to be logged in to leave a comment. Sign In
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
  1. <div align="center">
  2. <img src="assets/SG_img/SG - Horizontal Glow 2.png" width="600"/>
  3. <br/><br/>
  4. **Build, train, and fine-tune production-ready deep learning SOTA vision models**
  5. [![Tweet](https://img.shields.io/twitter/url/http/shields.io.svg?style=social)](https://twitter.com/intent/tweet?text=Easily%20train%20or%20fine-tune%20SOTA%20computer%20vision%20models%20from%20one%20training%20repository&url=https://github.com/Deci-AI/super-gradients&via=deci_ai&hashtags=AI,deeplearning,computervision,training,opensource)
  6. #### Version 3 is out! Notebooks have been updated!
  7. ______________________________________________________________________
  8. <p align="center">
  9. <a href="https://www.supergradients.com/">Website</a> •
  10. <a href="https://deci-ai.github.io/super-gradients/user_guide.html#introducing-the-supergradients-library">User Guide</a> •
  11. <a href="https://deci-ai.github.io/super-gradients/super_gradients.common.html">Docs</a> •
  12. <a href="#getting-started">Getting Started</a> •
  13. <a href="#implemented-model-architectures">Pretrained Models</a> •
  14. <a href="#community">Community</a> •
  15. <a href="#license">License</a> •
  16. <a href="#deci-platform">Deci Platform</a>
  17. </p>
  18. <p align="center">
  19. <a href="https://github.com/Deci-AI/super-gradients#prerequisites"><img src="https://img.shields.io/badge/python-3.7%20%7C%203.8%20%7C%203.9-blue" />
  20. <a href="https://github.com/Deci-AI/super-gradients#prerequisites"><img src="https://img.shields.io/badge/pytorch-1.9%20%7C%201.10-blue" />
  21. <a href="https://pypi.org/project/super-gradients/"><img src="https://img.shields.io/pypi/v/super-gradients" />
  22. <a href="https://github.com/Deci-AI/super-gradients#computer-vision-models-pretrained-checkpoints" ><img src="https://img.shields.io/badge/pre--trained%20models-34-brightgreen" />
  23. <a href="https://github.com/Deci-AI/super-gradients/releases"><img src="https://img.shields.io/github/v/release/Deci-AI/super-gradients" />
  24. <a href="https://join.slack.com/t/supergradients-comm52/shared_invite/zt-10vz6o1ia-b_0W5jEPEnuHXm087K~t8Q"><img src="https://img.shields.io/badge/slack-community-blueviolet" />
  25. <a href="https://github.com/Deci-AI/super-gradients/blob/master/LICENSE.md"><img src="https://img.shields.io/badge/license-Apache%202.0-blue" />
  26. <a href="https://deci-ai.github.io/super-gradients/welcome.html"><img src="https://img.shields.io/badge/docs-sphinx-brightgreen" />
  27. </p>
  28. </div>
  29. [](https://deci-ai.github.io/super-gradients/user_guide.html#introducing-the-supergradients-library)
  30. ## Build with SuperGradients
  31. __________________________________________________________________________________________________________
  32. ### Support various computer vision tasks
  33. <div align="center">
  34. <img src="./assets/SG_img/Segmentation 1500x900 .png" width="250px">
  35. <img src="./assets/SG_img/Object detection 1500X900.png" width="250px">
  36. <img src="./assets/SG_img/Classification 1500x900.png" width="250px">
  37. </div>
  38. ### Ready to deploy pre-trained SOTA models
  39. ```python
  40. # Load model with pretrained weights
  41. model = models.get("yolox_s", pretrained_weights="coco")
  42. ```
  43. #### Classification
  44. <div align="center">
  45. <img src="./assets/SG_img/Classification@2xDark.png" width="800px">
  46. </div>
  47. #### Semantic Segmentation
  48. <div align="center">
  49. <img src="./assets/SG_img/Semantic Segmentation@2xDark.png" width="800px">
  50. </div>
  51. #### Object Detection
  52. <div align="center">
  53. <img src="./assets/SG_img/Object Detection@2xDark.png" width="800px">
  54. </div>
  55. All Computer Vision Models - Pretrained Checkpoints can be found [here](src/super_gradients/training/Computer_Vision_Models_Pretrained_Checkpoints.md)
  56. ### Easy to train SOTA Models
  57. Easily load and fine-tune production-ready, pre-trained SOTA models that incorporate best practices and validated hyper-parameters for achieving best-in-class accuracy.
  58. For more information on how to do it go to [Getting Started](#getting-started)
  59. ### Plug and play recipes
  60. ```python
  61. python -m super_gradients.train_from_recipe --config-name=imagenet_regnetY architecture=regnetY800 dataset_interface.data_dir=<YOUR_Imagenet_LOCAL_PATH> ckpt_root_dir=<CHEKPOINT_DIRECTORY>
  62. ```
  63. More example on how and why to use recipes can be found in [Recipes](#recipes)
  64. ### Production readiness
  65. All SuperGradients models’ are production ready in the sense that they are compatible with deployment tools such as TensorRT (Nvidia) and OpenVINO (Intel) and can be easily taken into production. With a few lines of code you can easily integrate the models into your codebase.
  66. ```python
  67. # Load model with pretrained weights
  68. model = models.get("yolox_s", pretrained_weights="coco")
  69. # Prepare model for conversion
  70. # Input size is in format of [Batch x Channels x Width x Height] where 640 is the standart COCO dataset dimensions
  71. model.eval()
  72. model.prep_model_for_conversion(input_size=[1, 3, 640, 640])
  73. # Create dummy_input
  74. # Convert model to onnx
  75. torch.onnx.export(model, dummy_input, "yolox_s.onnx")
  76. ```
  77. More information on how to take your model to production can be found in [Getting Started](#getting-started) notebooks
  78. ## Quick Installation
  79. __________________________________________________________________________________________________________
  80. ```bash
  81. pip install super-gradients
  82. ```
  83. ## What's New
  84. __________________________________________________________________________________________________________
  85. * 【06/9/2022】 PP-LiteSeg - new pre-trained [checkpoints](src/super_gradients/training/Computer_Vision_Models_Pretrained_Checkpoints.md) for Cityscapes with SOTA mIoU scores (~1.5% above paper)🎯
  86. * 【07/08/2022】DDRNet23 - new pre-trained [checkpoints](src/super_gradients/training/Computer_Vision_Models_Pretrained_Checkpoints.md) and [recipes](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/recipes) for Cityscapes with SOTA mIoU scores (~1% above paper)🎯
  87. * 【27/07/2022】YOLOX models (object detection) - recipes and pre-trained checkpoints.
  88. * 【07/07/2022】SSD Lite MobileNet V2,V1 - Training [recipes](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/recipes/coco_ssd_lite_mobilenet_v2.yaml) and pre-trained [checkpoints](src/super_gradients/training/Computer_Vision_Models_Pretrained_Checkpoints.md) on COCO - Tailored for edge devices! 📱
  89. * 【07/07/2022】 STDC - new pre-trained [checkpoints](src/super_gradients/training/Computer_Vision_Models_Pretrained_Checkpoints.md) and [recipes](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/recipes) for Cityscapes with super SOTA mIoU scores (~2.5% above paper)🎯
  90. Check out SG full [release notes](https://github.com/Deci-AI/super-gradients/releases).
  91. ## Coming soon
  92. __________________________________________________________________________________________________________
  93. - [ ] PP-LiteSeg recipes for Cityscapes with SOTA mIoU scores (~1.5% above paper)🎯
  94. - [ ] Single class detectors (recipes, pre-trained checkpoints) for edge devices deployment.
  95. - [ ] Single class segmentation (recipes, pre-trained checkpoints) for edge devices deployment.
  96. - [ ] QAT capabilities (Quantization Aware Training).
  97. - [ ] Integration with more professional tools.
  98. ## Table of Content
  99. __________________________________________________________________________________________________________
  100. <!-- toc -->
  101. - [Getting Started](#getting-started)
  102. - [Advanced Features](#advanced-features)
  103. - [Installation Methods](#installation-methods)
  104. - [Prerequisites](#prerequisites)
  105. - [Quick Installation](#quick-installation)
  106. - [Implemented Model Architectures](#implemented-model-architectures)
  107. - [Contributing](#contributing)
  108. - [Citation](#citation)
  109. - [Community](#community)
  110. - [License](#license)
  111. - [Deci Platform](#deci-platform)
  112. <!-- tocstop -->
  113. ## Getting Started
  114. __________________________________________________________________________________________________________
  115. ### Start Training with Just 1 Command Line
  116. The most simple and straightforward way to start training SOTA performance models with SuperGradients reproducible recipes. Just define your dataset path and where you want your checkpoints to be saved and you are good to go from your terminal!
  117. ```bash
  118. python -m super_gradients.train_from_recipe --config-name=imagenet_regnetY architecture=regnetY800 dataset_interface.data_dir=<YOUR_Imagenet_LOCAL_PATH> ckpt_root_dir=<CHEKPOINT_DIRECTORY>
  119. ```
  120. ### Quickly Load Pre-Trained Weights for Your Desired Model with SOTA Performance
  121. Want to try our pre-trained models on your machine? Import SuperGradients, initialize your Trainer, and load your desired architecture and pre-trained weights from our [SOTA model zoo](src/super_gradients/training/Computer_Vision_Models_Pretrained_Checkpoints.md)
  122. ```python
  123. # The pretrained_weights argument will load a pre-trained architecture on the provided dataset
  124. import super_gradients
  125. model = models.get("model-name", pretrained_weights="pretrained-model-name")
  126. ```
  127. ### Classification
  128. #### Transfer Learning
  129. <table class="tfo-notebook-buttons" align="left">
  130. <td width="500">
  131. <a target="_blank" href="https://bit.ly/3xzIutb"><img src="./assets/SG_img/colab_logo.png" /> Classification Transfer Learning</a>
  132. </td>
  133. <td width="200">
  134. <a target="_blank" href="https://bit.ly/3xwYEn1"><img src="./assets/SG_img/GitHub_logo.png" /> GitHub source</a>
  135. </td>
  136. </table>
  137. </br></br>
  138. ### Semantic Segmentation
  139. #### Quick Start
  140. <table class="tfo-notebook-buttons" align="left">
  141. <td width="500">
  142. <a target="_blank" href="https://bit.ly/3qKx9m8"><img src="./assets/SG_img/colab_logo.png" /> Segmentation Quick Start</a>
  143. </td>
  144. <td width="200">
  145. <a target="_blank" href="https://bit.ly/3qJjxYq"><img src="./assets/SG_img/GitHub_logo.png" /> GitHub source </a>
  146. </td>
  147. </table>
  148. </br></br>
  149. #### Transfer Learning
  150. <table class="tfo-notebook-buttons" align="left">
  151. <td width="500">
  152. <a target="_blank" href="https://bit.ly/3qKwMbe"><img src="./assets/SG_img/colab_logo.png" /> Segmentation Transfer Learning</a>
  153. </td>
  154. <td width="200">
  155. <a target="_blank" href="https://bit.ly/3ShJlXn"><img src="./assets/SG_img/GitHub_logo.png" /> GitHub source</a>
  156. </td>
  157. </table>
  158. </br></br>
  159. #### How to Connect Custom Dataset
  160. <table class="tfo-notebook-buttons" align="left">
  161. <td width="500">
  162. <a target="_blank" href="https://bit.ly/3QQBVJp"><img src="./assets/SG_img/colab_logo.png" /> Segmentation How to Connect Custom Dataset</a>
  163. </td>
  164. <td width="200">
  165. <a target="_blank" href="https://bit.ly/3Us2WGi"><img src="./assets/SG_img/GitHub_logo.png" /> GitHub source</a>
  166. </td>
  167. </table>
  168. </br></br>
  169. ### Object Detection
  170. #### Transfer Learning
  171. <table class="tfo-notebook-buttons" align="left">
  172. <td width="500">
  173. <a target="_blank" href="https://bit.ly/3SkMohx"><img src="./assets/SG_img/colab_logo.png" /> Detection Transfer Learning</a>
  174. </td>
  175. <td width="200">
  176. <a target="_blank" href="https://bit.ly/3DF8siG"><img src="./assets/SG_img/GitHub_logo.png" /> GitHub source</a>
  177. </td>
  178. </table>
  179. </br></br>
  180. #### How to Connect Custom Dataset
  181. <table class="tfo-notebook-buttons" align="left">
  182. <td width="500">
  183. <a target="_blank" href="https://bit.ly/3dqDlg3"><img src="./assets/SG_img/colab_logo.png" /> Detection How to Connect Custom Dataset</a>
  184. </td>
  185. <td width="200">
  186. <a target="_blank" href="https://bit.ly/3xBlcmq"><img src="./assets/SG_img/GitHub_logo.png" /> GitHub source</a>
  187. </td>
  188. </table>
  189. </br></br>
  190. ### How to Predict Using Pre-trained Model
  191. #### Segmentation, Detection and Classification Prediction
  192. <table class="tfo-notebook-buttons" align="left">
  193. <td width="500">
  194. <a target="_blank" href="https://bit.ly/3f4mssd"><img src="./assets/SG_img/colab_logo.png" /> How to Predict Using Pre-trained Model</a>
  195. </td>
  196. <td width="200">
  197. <a target="_blank" href="https://bit.ly/3Sf59Tr"><img src="./assets/SG_img/GitHub_logo.png" /> GitHub source</a>
  198. </td>
  199. </table>
  200. </br></br>
  201. ## Advanced Features
  202. __________________________________________________________________________________________________________
  203. ### Knowledge Distillation Training
  204. Knowledge Distillation is a training technique that uses a large model, teacher model, to improve the performance of a smaller model, the student model.
  205. Learn more about SuperGradients knowledge distillation training with our pre-trained BEiT base teacher model and Resnet18 student model on CIFAR10 example notebook on Google Colab for an easy to use tutorial using free GPU hardware
  206. <table class="tfo-notebook-buttons" align="left">
  207. <td width="500">
  208. <a target="_blank" href="https://bit.ly/3BLA5oR"><img src="./assets/SG_img/colab_logo.png" /> Knowledge Distillation Training</a>
  209. </td>
  210. <td width="200">
  211. <a target="_blank" href="https://bit.ly/3S9UlG4"><img src="./assets/SG_img/GitHub_logo.png" /> GitHub source</a>
  212. </td>
  213. </table>
  214. </br></br>
  215. ### Recipes
  216. To train a model, it is necessary to configure 4 main components. These components are aggregated into a single "main" recipe `.yaml` file that inherits the aforementioned dataset, architecture, raining and checkpoint params. It is also possible (and recomended for flexibility) to override default settings with custom ones.
  217. All recipes can be found [here](src/super_gradients/recipes/Training_Recipes.md)
  218. <table class="tfo-notebook-buttons" align="left">
  219. <td width="500">
  220. <a target="_blank" href="https://bit.ly/3UiY5ab"><img src="./assets/SG_img/colab_logo.png" /> How to Use Recipes</a>
  221. </td>
  222. <td width="200">
  223. <a target="_blank" href="https://bit.ly/3QSrHbm"><img src="./assets/SG_img/GitHub_logo.png" /> GitHub source</a>
  224. </td>
  225. </table>
  226. </br></br>
  227. ### Using DDP
  228. ```python
  229. from super_gradients import init_trainer
  230. from super_gradients.common import MultiGPUMode
  231. from super_gradients.training.utils.distributed_training_utils import setup_gpu_mode
  232. # Initialize the environment
  233. init_trainer()
  234. # Launch DDP on 1 device (node) of 4 GPU's
  235. setup_gpu_mode(gpu_mode=MultiGPUMode.DISTRIBUTED_DATA_PARALLEL, num_gpus=4)
  236. # Define the objects
  237. # The trainer will run on DDP without anything else to change
  238. ```
  239. ### Easily change architectures parameters
  240. ```python
  241. from super_gradients.training import models
  242. # instantiate default pretrained resnet18
  243. default_resnet18 = models.get(name="resnet18", num_classes=100, pretrained_weights="imagenet")
  244. # instantiate pretrained resnet18, turning DropPath on with probability 0.5
  245. droppath_resnet18 = models.get(name="resnet18", arch_params={"droppath_prob": 0.5}, num_classes=100, pretrained_weights="imagenet")
  246. # instantiate pretrained resnet18, without classifier head. Output will be from the last stage before global pooling
  247. backbone_resnet18 = models.get(name="resnet18", arch_params={"backbone_mode": True}, pretrained_weights="imagenet")
  248. ```
  249. ### Using phase callbacks
  250. ```python
  251. from super_gradients import Trainer
  252. from torch.optim.lr_scheduler import ReduceLROnPlateau
  253. from super_gradients.training.utils.callbacks import Phase, LRSchedulerCallback
  254. from super_gradients.training.metrics.classification_metrics import Accuracy
  255. # define PyTorch train and validation loaders and optimizer
  256. # define what to be called in the callback
  257. rop_lr_scheduler = ReduceLROnPlateau(optimizer, mode="max", patience=10, verbose=True)
  258. # define phase callbacks, they will fire as defined in Phase
  259. phase_callbacks = [LRSchedulerCallback(scheduler=rop_lr_scheduler,
  260. phase=Phase.VALIDATION_EPOCH_END,
  261. metric_name="Accuracy")]
  262. # create a trainer object, look the declaration for more parameters
  263. trainer = Trainer("experiment_name")
  264. # define phase_callbacks as part of the training parameters
  265. train_params = {"phase_callbacks": phase_callbacks}
  266. ```
  267. ### Integration to Weights and Biases
  268. ```python
  269. from super_gradients import Trainer
  270. # create a trainer object, look the declaration for more parameters
  271. trainer = Trainer("experiment_name")
  272. train_params = { ... # training parameters
  273. "sg_logger": "wandb_sg_logger", # Weights&Biases Logger, see class WandBSGLogger for details
  274. "sg_logger_params": # paramenters that will be passes to __init__ of the logger
  275. {
  276. "project_name": "project_name", # W&B project name
  277. "save_checkpoints_remote": True
  278. "save_tensorboard_remote": True
  279. "save_logs_remote": True
  280. }
  281. }
  282. ```
  283. ## Installation Methods
  284. __________________________________________________________________________________________________________
  285. ### Prerequisites
  286. <details>
  287. <summary>General requirements</summary>
  288. - Python 3.7, 3.8 or 3.9 installed.
  289. - torch>=1.9.0
  290. - https://pytorch.org/get-started/locally/
  291. - The python packages that are specified in requirements.txt;
  292. </details>
  293. <details>
  294. <summary>To train on nvidia GPUs</summary>
  295. - [Nvidia CUDA Toolkit >= 11.2](https://developer.nvidia.com/cuda-11.2.0-download-archive?target_os=Linux&target_arch=x86_64&target_distro=Ubuntu)
  296. - CuDNN >= 8.1.x
  297. - Nvidia Driver with CUDA >= 11.2 support (≥460.x)
  298. </details>
  299. ### Quick Installation
  300. <details>
  301. <summary>Install stable version using PyPi</summary>
  302. See in [PyPi](https://pypi.org/project/super-gradients/)
  303. ```bash
  304. pip install super-gradients
  305. ```
  306. That's it !
  307. </details>
  308. <details>
  309. <summary>Install using GitHub</summary>
  310. ```bash
  311. pip install git+https://github.com/Deci-AI/super-gradients.git@stable
  312. ```
  313. </details>
  314. ## Implemented Model Architectures
  315. __________________________________________________________________________________________________________
  316. Detailed list can be found [here](src/super_gradients/training/models/Implemented%20Model%20Architectures.md)
  317. ### Image Classification
  318. - [DensNet (Densely Connected Convolutional Networks)](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/training/models/classification_models/densenet.py)
  319. - [DPN](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/training/models/classification_models/dpn.py)
  320. - [EfficientNet](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/training/models/classification_models/efficientnet.py)
  321. - [LeNet](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/training/models/classification_models/lenet.py)
  322. - [MobileNet](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/training/models/classification_models/mobilenet.py)
  323. - [MobileNet v2](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/training/models/classification_models/mobilenetv2.py)
  324. - [MobileNet v3](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/training/models/classification_models/mobilenetv3.py)
  325. - [PNASNet](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/training/models/classification_models/pnasnet.py)
  326. - [Pre-activation ResNet](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/training/models/classification_models/preact_resnet.py)
  327. - [RegNet](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/training/models/classification_models/regnet.py)
  328. - [RepVGG](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/training/models/classification_models/repvgg.py)
  329. - [ResNet](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/training/models/classification_models/resnet.py)
  330. - [ResNeXt](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/training/models/classification_models/resnext.py)
  331. - [SENet ](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/training/models/classification_models/senet.py)
  332. - [ShuffleNet](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/training/models/classification_models/shufflenet.py)
  333. - [ShuffleNet v2](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/training/models/classification_models/shufflenetv2.py)
  334. - [VGG](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/training/models/classification_models/vgg.py)
  335. ### Semantic Segmentation
  336. - [PP-LiteSeg](https://bit.ly/3RrtMMO)
  337. - [DDRNet (Deep Dual-resolution Networks)](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/training/models/segmentation_models/ddrnet.py)
  338. - [LadderNet](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/training/models/segmentation_models/laddernet.py)
  339. - [RegSeg](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/training/models/segmentation_models/regseg.py)
  340. - [ShelfNet](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/training/models/segmentation_models/shelfnet.py)
  341. - [STDC](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/training/models/segmentation_models/stdc.py)
  342. ### Object Detection
  343. - [CSP DarkNet](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/training/models/detection_models/csp_darknet53.py)
  344. - [DarkNet-53](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/training/models/detection_models/darknet53.py)
  345. - [SSD (Single Shot Detector)](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/training/models/detection_models/ssd.py)
  346. - [YOLOX](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/training/models/detection_models/yolox.py)
  347. __________________________________________________________________________________________________________
  348. ## Documentation
  349. Check SuperGradients [Docs](https://deci-ai.github.io/super-gradients/welcome.html) for full documentation, user guide, and examples.
  350. ## Contributing
  351. To learn about making a contribution to SuperGradients, please see our [Contribution page](CONTRIBUTING.md).
  352. Our awesome contributors:
  353. <a href="https://github.com/Deci-AI/super-gradients/graphs/contributors">
  354. <img src="https://contrib.rocks/image?repo=Deci-AI/super-gradients" />
  355. </a>
  356. <br/>Made with [contrib.rocks](https://contrib.rocks).
  357. ## Citation
  358. If you are using SuperGradients library or benchmarks in your research, please cite SuperGradients deep learning training library.
  359. ## Community
  360. If you want to be a part of SuperGradients growing community, hear about all the exciting news and updates, need help, request for advanced features,
  361. or want to file a bug or issue report, we would love to welcome you aboard!
  362. * Slack is the place to be and ask questions about SuperGradients and get support. [Click here to join our Slack](
  363. https://join.slack.com/t/supergradients-comm52/shared_invite/zt-10vz6o1ia-b_0W5jEPEnuHXm087K~t8Q)
  364. * To report a bug, [file an issue](https://github.com/Deci-AI/super-gradients/issues) on GitHub.
  365. * Join the [SG Newsletter](https://www.supergradients.com/#Newsletter)
  366. for staying up to date with new features and models, important announcements, and upcoming events.
  367. * For a short meeting with us, use this [link](https://calendly.com/ofer-baratz-deci/15min) and choose your preferred time.
  368. ## License
  369. This project is released under the [Apache 2.0 license](LICENSE).
  370. __________________________________________________________________________________________________________
  371. ## Deci Platform
  372. Deci Platform is our end to end platform for building, optimizing and deploying deep learning models to production.
  373. [Request free trial](https://bit.ly/3qO3icq) to enjoy immediate improvement in throughput, latency, memory footprint and model size.
  374. Features:
  375. - Automatically compile and quantize your models with just a few clicks (TensorRT, OpenVINO).
  376. - Gain up to 10X improvement in throughput, latency, memory and model size.
  377. - Easily benchmark your models’ performance on different hardware and batch sizes.
  378. - Invite co-workers to collaborate on models and communicate your progress.
  379. - Deci supports all common frameworks and Hardware, from Intel CPUs to Nvidia's GPUs and Jetsons.
  380. ֿ
  381. Request free trial [here](https://bit.ly/3qO3icq)
Tip!

Press p or to see the previous file or, n or to see the next file

Comments

Loading...