1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
|
- import shutil
- import unittest
- import os
- from super_gradients import Trainer
- from super_gradients.training.dataloaders.dataloaders import classification_test_dataloader, detection_test_dataloader, segmentation_test_dataloader
- from super_gradients.training.metrics import Accuracy, Top5
- from super_gradients.training import models
- from super_gradients.training.metrics.detection_metrics import DetectionMetrics
- from super_gradients.training.metrics.segmentation_metrics import PixelAccuracy, IoU
- from super_gradients.training.models.detection_models.yolo_base import YoloPostPredictionCallback
- from super_gradients.common.object_names import Models
- class TestWithoutTrainTest(unittest.TestCase):
- @classmethod
- def setUp(cls):
- # NAMES FOR THE EXPERIMENTS TO LATER DELETE
- cls.folder_names = ["test_classification_model", "test_detection_model", "test_segmentation_model"]
- @classmethod
- def tearDownClass(cls) -> None:
- # ERASE ALL THE FOLDERS THAT WERE CREATED DURING THIS TEST
- for folder in cls.folder_names:
- if os.path.isdir(os.path.join("checkpoints", folder)):
- shutil.rmtree(os.path.join("checkpoints", folder))
- @staticmethod
- def get_classification_trainer(name=""):
- trainer = Trainer(name)
- model = models.get(Models.RESNET18, num_classes=5)
- return trainer, model
- @staticmethod
- def get_detection_trainer(name=""):
- trainer = Trainer(name)
- model = models.get(Models.YOLOX_S, num_classes=5)
- return trainer, model
- @staticmethod
- def get_segmentation_trainer(name=""):
- shelfnet_lw_arch_params = {"num_classes": 5}
- trainer = Trainer(name)
- model = models.get(Models.SHELFNET34_LW, arch_params=shelfnet_lw_arch_params)
- return trainer, model
- def test_test_without_train(self):
- trainer, model = self.get_classification_trainer(self.folder_names[0])
- assert isinstance(
- trainer.test(model=model, silent_mode=True, test_metrics_list=[Accuracy(), Top5()], test_loader=classification_test_dataloader()), dict
- )
- trainer, model = self.get_detection_trainer(self.folder_names[1])
- test_metrics = [DetectionMetrics(post_prediction_callback=YoloPostPredictionCallback(), num_cls=5)]
- assert isinstance(
- trainer.test(model=model, silent_mode=True, test_metrics_list=test_metrics, test_loader=detection_test_dataloader(image_size=320)), dict
- )
- trainer, model = self.get_segmentation_trainer(self.folder_names[2])
- assert isinstance(
- trainer.test(model=model, silent_mode=True, test_metrics_list=[IoU(21), PixelAccuracy()], test_loader=segmentation_test_dataloader()), dict
- )
- if __name__ == "__main__":
- unittest.main()
|