1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
|
- import torch
- import unittest
- from super_gradients.training.losses.dice_loss import DiceLoss, GeneralizedDiceLoss, BinaryDiceLoss
- class DiceLossTest(unittest.TestCase):
- def setUp(self) -> None:
- self.img_size = 32
- self.eps = 1e-5
- self.num_classes = 2
- def _get_default_predictions_tensor(self, fill_value: float):
- return torch.empty(3, self.num_classes, self.img_size, self.img_size).fill_(fill_value)
- def _get_default_target_zeroes_tensor(self):
- return torch.zeros((3, self.img_size, self.img_size)).long()
- def _assertion_dice_torch_values(self, expected_value: torch.Tensor, found_value: torch.Tensor, rtol: float = 1e-5):
- self.assertTrue(torch.allclose(found_value, expected_value, rtol=rtol), msg=f"Unequal dice loss: excepted: {expected_value}, found: {found_value}")
- def test_dice(self):
- predictions = self._get_default_predictions_tensor(0.0)
- # only label 0 is predicted as positive.
- predictions[:, 0] = 1.0
- target = self._get_default_target_zeroes_tensor()
- # half target with label 0, the other half with 1.
- target[:, : self.img_size // 2] = 1
- intersection = torch.tensor([0.5, 0.0])
- denominator = torch.tensor([1.5, 0.5])
- expected_dice_loss = 1.0 - ((2.0 * intersection) / (denominator + self.eps))
- expected_dice_loss = expected_dice_loss.mean()
- criterion = DiceLoss(smooth=0, eps=self.eps, apply_softmax=False)
- dice_loss = criterion(predictions, target)
- self._assertion_dice_torch_values(expected_dice_loss, dice_loss)
- def test_dice_binary(self):
- # all predictions are 0.6
- predictions = torch.ones((1, 1, self.img_size, self.img_size)) * 0.6
- target = self._get_default_target_zeroes_tensor()
- # half target with label 0, the other half with 1.
- target[:, : self.img_size // 2] = 1
- intersection = torch.tensor([0.6 * 0.5])
- denominator = torch.tensor([0.6 + 0.5])
- expected_dice_loss = 1.0 - ((2.0 * intersection) / (denominator + self.eps))
- expected_dice_loss = expected_dice_loss.mean()
- criterion = BinaryDiceLoss(smooth=0, eps=self.eps, apply_sigmoid=False)
- dice_loss = criterion(predictions, target)
- self._assertion_dice_torch_values(expected_dice_loss, dice_loss, rtol=1e-3)
- def test_dice_weight_classes(self):
- weight = torch.tensor([0.25, 0.66])
- predictions = self._get_default_predictions_tensor(0.0)
- # only label 0 is predicted as positive.
- predictions[:, 0] = 1.0
- target = self._get_default_target_zeroes_tensor()
- # half target with label 0, the other half with 1.
- target[:, : self.img_size // 2] = 1
- intersection = torch.tensor([0.5, 0.0])
- denominator = torch.tensor([1.5, 0.5])
- expected_dice_loss = 1.0 - ((2.0 * intersection) / (denominator + self.eps))
- expected_dice_loss *= weight
- expected_dice_loss = expected_dice_loss.mean()
- criterion = DiceLoss(smooth=0, eps=self.eps, apply_softmax=False, weight=weight)
- dice_loss = criterion(predictions, target)
- self._assertion_dice_torch_values(expected_dice_loss, dice_loss)
- def test_dice_with_ignore(self):
- ignore_index = 2
- predictions = self._get_default_predictions_tensor(0.0)
- # only label 0 is predicted as positive.
- predictions[:, 0] = 1.0
- target = self._get_default_target_zeroes_tensor()
- # half target with label 0, quarter with 1 and quarter with ignore.
- target[:, : self.img_size // 2, : self.img_size // 2] = 1
- target[:, : self.img_size // 2, self.img_size // 2 :] = ignore_index
- # ignore samples are excluded in both intersection and denominator.
- intersection = torch.tensor([0.5, 0.0])
- denominator = torch.tensor([0.75 + 0.5, 0.25])
- expected_dice_loss = 1.0 - ((2.0 * intersection) / (denominator + self.eps))
- expected_dice_loss = expected_dice_loss.mean()
- criterion = DiceLoss(smooth=0, eps=self.eps, apply_softmax=False, ignore_index=ignore_index)
- dice_loss = criterion(predictions, target)
- self._assertion_dice_torch_values(expected_dice_loss, dice_loss)
- def test_generalized_dice(self):
- predictions = self._get_default_predictions_tensor(0.0)
- # half prediction are 0 class, the other half 1 class.
- predictions[:, 0, : self.img_size // 2] = 1.0
- predictions[:, 1, self.img_size // 2 :] = 1.0
- # only 0 class in target.
- target = self._get_default_target_zeroes_tensor()
- intersection = torch.tensor([0.5, 0.0])
- denominator = torch.tensor([1.5, 0.5])
- counts = torch.tensor([target.numel(), 0.0])
- weights = 1 / (counts**2)
- weights[1] = 0.0 # instead of inf
- eps = 1e-17
- expected_dice_loss = 1.0 - ((2.0 * weights * intersection) / (weights * denominator + eps))
- expected_dice_loss = expected_dice_loss.mean()
- criterion = GeneralizedDiceLoss(smooth=0, eps=eps, apply_softmax=False)
- dice_loss = criterion(predictions, target)
- self._assertion_dice_torch_values(expected_dice_loss, dice_loss)
- if __name__ == "__main__":
- unittest.main()
|