Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

searchindex.js 147 KB

You have to be logged in to leave a comment. Sign In
1
  1. Search.setIndex({"docnames": ["CONTRIBUTING", "LICENSE", "index", "super_gradients", "super_gradients.common", "super_gradients.training", "welcome"], "filenames": ["CONTRIBUTING.md", "LICENSE.md", "index.rst", "super_gradients.rst", "super_gradients.common.rst", "super_gradients.training.rst", "welcome.md"], "titles": ["Contribution Guidelines", "<no title>", "Welcome to SuperGradients\u2019s documentation!", "super_gradients package", "Common package", "Training package", "Version 3 is out! Notebooks have been updated!"], "terms": {"we": [0, 1, 5, 6], "appreci": 0, "all": [0, 1, 4, 5, 6], "If": [0, 1, 4, 5, 6], "you": [0, 1, 5, 6], "ar": [0, 1, 5, 6], "plan": 0, "back": 0, "bug": [0, 6], "fix": [0, 5], "pleas": [0, 5, 6], "do": [0, 1, 5, 6], "so": [0, 5], "without": [0, 1, 5, 6], "ani": [0, 1, 4, 5], "further": [0, 5], "discuss": [0, 1, 5], "new": [0, 2, 5], "featur": [0, 2], "util": [0, 2, 3, 6], "function": [0, 4, 5], "extens": [0, 5], "first": [0, 4, 5], "open": 0, "an": [0, 1, 4, 5, 6], "issu": [0, 1, 6], "u": [0, 6], "here": [0, 6], "few": [0, 5, 6], "more": [0, 1, 4, 5, 6], "thing": [0, 4], "know": 0, "contirbut": 0, "i": [0, 1, 2, 4, 5], "simpl": [0, 6], "get": [0, 2, 3, 4, 5], "start": [0, 2, 3, 5], "your": [0, 1, 2, 5], "us": [0, 1, 2, 4, 5], "suggest": 0, "chang": [0, 1, 2, 5], "creat": [0, 5, 6], "describ": [0, 1, 5], "necessari": [0, 6], "add": [0, 1, 5], "label": [0, 5], "eas": 0, "orient": 0, "fork": 0, "super": [0, 5, 6], "gradient": [0, 5, 6], "can": [0, 5, 6], "make": [0, 1, 5, 6], "local": [0, 4, 5, 6], "test": [0, 2, 3, 4, 5], "them": [0, 5], "branch": 0, "The": [0, 1, 4, 5, 6], "name": [0, 1, 4, 5, 6], "convent": 0, "enforc": 0, "ci": 0, "cd": 0, "sure": [0, 5], "your_usernam": 0, "your_branch_nam": 0, "otherwis": [0, 1, 5], "fail": 0, "relev": [0, 4, 5], "cover": 0, "unit": [0, 4], "integr": [0, 2], "e2": 0, "where": [0, 1, 5, 6], "requir": [0, 1, 5, 6], "ensur": [0, 5], "pass": [0, 4, 5, 6], "format": [0, 1, 5, 6], "up": [0, 4, 5, 6], "standard": 0, "follow": [0, 1, 5], "pep8": 0, "pull": 0, "request": [0, 6], "against": [0, 1], "master": 0, "updat": [0, 2, 3, 5], "from": [0, 1, 4, 5, 6], "remot": [0, 5], "might": [0, 5], "caus": [0, 1], "merg": [0, 5], "conflict": [0, 4], "tool": [0, 4, 6], "nbdime": 0, "solv": 0, "thi": [0, 1, 4, 5, 6], "instal": [0, 2, 5], "pip": [0, 6], "ndime": 0, "run": [0, 4, 5, 6], "diff": 0, "between": [0, 4, 5], "two": [0, 5], "nbdiff": 0, "notebook_1": 0, "ipynb": 0, "notebook_2": 0, "work": [0, 1], "hard": [0, 5], "repositori": 0, "readabl": [0, 1], "maintain": [0, 5], "testabl": 0, "googl": [0, 6], "docstr": 0, "outlin": 0, "styleguid": 0, "page": [0, 1, 2, 5, 6], "For": [0, 1, 5, 6], "exampl": [0, 1, 5, 6], "def": [0, 5], "python_funct": 0, "first_argu": 0, "int": [0, 5], "second_argu": 0, "bool": [0, 4, 5], "someth": 0, "argument": [0, 6], "arg": [0, 5], "second": [0, 5], "rais": [0, 5], "except": [0, 1, 2, 3], "should": [0, 1, 4, 5], "float": [0, 5], "return": [0, 4, 5], "whether": [0, 1, 5], "calcul": [0, 5], "wa": [0, 1, 5], "correct": [0, 2, 3, 5], "github": [0, 5, 6], "technic": 0, "host": [0, 5], "http": [0, 1, 5, 6], "deci": [0, 1, 2], "ai": [0, 1, 6], "io": [0, 5], "welcom": [0, 6], "html": [0, 5], "To": [0, 1, 5, 6], "gener": [0, 1, 6], "doc": [0, 5, 6], "base": [0, 1, 4, 5, 6], "current": [0, 4, 5], "tree": [0, 5], "script": [0, 5], "generate_doc": 0, "sh": 0, "And": [0, 5], "automat": [0, 6], "onc": 0, "commit": 0, "push": 0, "step": [0, 5], "manual": 0, "apach": [1, 6], "licens": [1, 2], "version": [1, 2, 5], "2": [1, 5, 6], "0": [1, 5, 6], "januari": 1, "2004": 1, "www": 1, "org": [1, 5, 6], "term": [1, 5], "AND": 1, "condit": [1, 5], "FOR": 1, "reproduct": 1, "distribut": [1, 5], "definit": 1, "shall": 1, "mean": [1, 5], "defin": [1, 5, 6], "section": [1, 5], "1": [1, 2, 5], "through": [1, 5], "9": [1, 5, 6], "document": [1, 4, 5], "licensor": 1, "copyright": 1, "owner": 1, "entiti": 1, "author": 1, "grant": 1, "legal": 1, "union": [1, 5], "act": 1, "other": [1, 2, 3, 4, 5], "control": [1, 4, 5], "under": [1, 5, 6], "common": [1, 2, 3, 5, 6], "purpos": 1, "power": 1, "direct": 1, "indirect": 1, "manag": [1, 4, 5], "contract": 1, "ii": 1, "ownership": 1, "fifti": 1, "percent": 1, "50": [1, 5], "outstand": 1, "share": 1, "iii": 1, "benefici": 1, "individu": 1, "exercis": 1, "permiss": 1, "sourc": [1, 4, 5, 6], "form": [1, 5], "prefer": [1, 6], "modif": 1, "includ": [1, 5], "limit": 1, "softwar": 1, "code": [1, 4, 6], "configur": [1, 5, 6], "file": [1, 4, 5, 6], "object": [1, 2, 4, 5], "result": [1, 5], "mechan": 1, "transform": [1, 2, 3], "translat": [1, 2, 3, 5], "compil": [1, 6], "convers": [1, 5, 6], "media": 1, "type": [1, 5], "authorship": 1, "made": [1, 5, 6], "avail": 1, "indic": [1, 5], "notic": 1, "attach": 1, "provid": [1, 5, 6], "appendix": 1, "below": [1, 5], "deriv": [1, 5], "which": [1, 4, 5], "editori": 1, "revis": 1, "annot": [1, 5], "elabor": 1, "repres": [1, 5], "whole": 1, "origin": [1, 5], "remain": [1, 5], "separ": [1, 5], "mere": 1, "link": [1, 6], "bind": 1, "interfac": 1, "thereof": 1, "contribut": [1, 2, 5], "addit": [1, 5], "intention": 1, "submit": 1, "inclus": 1, "behalf": 1, "electron": 1, "verbal": 1, "written": [1, 5], "commun": [1, 2], "sent": 1, "its": [1, 5], "mail": 1, "list": [1, 5, 6], "system": 1, "track": 1, "improv": [1, 6], "exclud": [1, 5], "conspicu": 1, "mark": [1, 5], "design": 1, "write": [1, 5], "Not": 1, "contributor": [1, 6], "whom": 1, "ha": [1, 5], "been": [1, 2, 5], "receiv": [1, 5], "subsequ": 1, "incorpor": [1, 6], "within": [1, 5], "subject": 1, "each": [1, 4, 5], "herebi": 1, "perpetu": 1, "worldwid": 1, "non": 1, "exclus": 1, "charg": [1, 4], "royalti": 1, "free": [1, 6], "irrevoc": 1, "reproduc": [1, 5, 6], "prepar": [1, 4, 6], "publicli": 1, "displai": [1, 5], "perform": [1, 2, 5], "sublicens": 1, "patent": 1, "state": [1, 5], "have": [1, 2, 5], "offer": 1, "sell": 1, "import": [1, 5, 6], "transfer": [1, 2], "appli": [1, 5], "onli": [1, 5], "those": 1, "claim": 1, "necessarili": 1, "infring": 1, "": [1, 4, 5], "alon": 1, "combin": [1, 5], "institut": 1, "litig": 1, "cross": [1, 5], "counterclaim": 1, "lawsuit": 1, "alleg": 1, "constitut": 1, "contributori": 1, "termin": [1, 6], "date": [1, 6], "redistribut": 1, "mai": 1, "copi": [1, 4], "medium": 1, "meet": [1, 6], "must": [1, 5], "give": [1, 5], "recipi": 1, "b": [1, 6], "modifi": 1, "carri": 1, "promin": 1, "c": 1, "retain": 1, "trademark": 1, "attribut": [1, 4, 5], "pertain": 1, "part": [1, 5, 6], "d": 1, "text": 1, "contain": [1, 5], "least": [1, 5], "one": [1, 5], "place": [1, 5, 6], "along": [1, 5], "wherev": 1, "third": [1, 5], "parti": 1, "normal": [1, 2, 3, 5], "appear": [1, 5], "content": [1, 2, 3], "inform": [1, 5, 6], "own": 1, "alongsid": 1, "addendum": 1, "cannot": 1, "constru": 1, "statement": 1, "differ": [1, 4, 5, 6], "compli": 1, "submiss": 1, "unless": 1, "explicitli": 1, "notwithstand": 1, "abov": [1, 5, 6], "noth": 1, "herein": 1, "supersed": 1, "agreement": 1, "execut": 1, "regard": 1, "doe": [1, 5], "trade": 1, "servic": [1, 4], "product": [1, 2], "reason": 1, "customari": 1, "disclaim": 1, "warranti": 1, "applic": 1, "law": 1, "agre": 1, "AS": 1, "basi": 1, "OR": [1, 5], "OF": 1, "kind": 1, "either": [1, 5], "express": 1, "impli": 1, "titl": [1, 5], "merchant": 1, "fit": [1, 5], "A": [1, 4, 5], "particular": [1, 5], "sole": 1, "respons": [1, 4], "determin": 1, "appropri": 1, "assum": [1, 5], "risk": 1, "associ": 1, "liabil": 1, "In": [1, 5], "event": [1, 6], "theori": 1, "tort": 1, "neglig": 1, "deliber": 1, "grossli": 1, "liabl": 1, "damag": 1, "special": 1, "incident": 1, "consequenti": 1, "charact": 1, "aris": 1, "out": [1, 2, 5], "inabl": 1, "loss": [1, 2, 3, 5], "goodwil": 1, "stoppag": 1, "comput": [1, 2, 3, 5], "failur": 1, "malfunct": 1, "commerci": 1, "even": [1, 5], "advis": 1, "possibl": [1, 5, 6], "accept": 1, "while": [1, 5], "choos": [1, 5, 6], "fee": 1, "support": [1, 2, 5], "indemn": 1, "oblig": 1, "right": 1, "consist": 1, "howev": 1, "indemnifi": 1, "defend": 1, "hold": [1, 5], "harmless": 1, "incur": 1, "assert": 1, "end": [1, 5, 6], "how": [1, 2, 5], "boilerpl": [1, 5], "field": [1, 5], "enclos": 1, "bracket": 1, "replac": 1, "identifi": 1, "don": [1, 5], "t": [1, 5], "comment": 1, "syntax": 1, "also": [1, 5, 6], "recommend": [1, 5], "class": [1, 4, 5, 6], "descript": 1, "same": [1, 5], "print": [1, 5], "easier": 1, "identif": 1, "archiv": 1, "2022": [1, 6], "complianc": 1, "obtain": 1, "see": [1, 4, 5, 6], "specif": [1, 5], "languag": 1, "govern": 1, "3": [2, 5], "notebook": 2, "build": 2, "variou": 2, "vision": [2, 5], "task": [2, 5], "readi": 2, "deploi": 2, "pre": 2, "train": [2, 3], "sota": 2, "model": [2, 3], "classif": [2, 3, 4, 5], "semant": [2, 5], "segment": [2, 5], "detect": [2, 5], "easi": 2, "plug": 2, "plai": 2, "recip": [2, 5], "quick": 2, "what": [2, 5], "come": [2, 5], "soon": 2, "just": [2, 5], "command": 2, "line": 2, "quickli": 2, "load": [2, 4, 5], "weight": [2, 5], "desir": [2, 5], "learn": [2, 5], "connect": [2, 4], "custom": 2, "dataset": [2, 3], "predict": [2, 3, 5], "advanc": 2, "knowledg": [2, 5], "distil": [2, 5], "ddp": [2, 4, 5], "easili": 2, "architectur": [2, 5], "paramet": [2, 4, 5], "phase": [2, 4, 5], "callback": [2, 4, 5], "bias": 2, "method": [2, 5], "prerequisit": 2, "implement": [2, 5], "imag": [2, 5], "citat": 2, "platform": 2, "packag": [2, 6], "setup_crash_handl": [2, 3, 4], "explicit_params_valid": [2, 3, 4], "singleton": [2, 3, 4], "awsconnector": [2, 3, 4], "get_aws_sess": [2, 3, 4], "get_aws_client_for_service_nam": [2, 3, 4], "get_aws_resource_for_service_nam": [2, 3, 4], "is_client_error": [2, 3, 4], "datasetdatainterfac": [2, 3, 4], "load_remote_dataset_fil": [2, 3, 4], "adnnmodelrepositorydatainterfac": [2, 3, 4], "load_all_remote_log_fil": [2, 3, 4], "save_all_remote_checkpoint_fil": [2, 3, 4], "load_remote_checkpoints_fil": [2, 3, 4], "load_remote_logging_fil": [2, 3, 4], "save_remote_checkpoints_fil": [2, 3, 4], "save_remote_tensorboard_event_fil": [2, 3, 4], "s3connector": [2, 3, 4], "check_key_exist": [2, 3, 4], "get_object_by_etag": [2, 3, 4], "create_bucket": [2, 3, 4], "delete_bucket": [2, 3, 4], "get_object_metadata": [2, 3, 4], "delete_kei": [2, 3, 4], "upload_file_from_stream": [2, 3, 4], "upload_fil": [2, 3, 4], "download_kei": [2, 3, 4], "download_keys_by_prefix": [2, 3, 4], "download_file_by_path": [2, 3, 4], "empty_folder_content_by_path_prefix": [2, 3, 4], "upload_buff": [2, 3, 4], "list_bucket_object": [2, 3, 4], "create_presigned_upload_url": [2, 3, 4], "create_presigned_download_url": [2, 3, 4], "convert_content_length_to_mb": [2, 3, 4], "copy_kei": [2, 3, 4], "init_train": [2, 3, 4, 6], "is_distribut": [2, 3, 4], "strictload": [2, 3, 4, 5], "off": [2, 3, 4, 5], "ON": [2, 3, 4, 5], "no_key_match": [2, 3, 4, 5], "deeplearningtask": [2, 3, 4], "semantic_segment": [2, 3, 4], "object_detect": [2, 3, 4], "depth_estim": [2, 3, 4], "pose_estim": [2, 3, 4], "nlp": [2, 3, 4], "evaluationtyp": [2, 3, 4, 5], "valid": [2, 3, 4, 5, 6], "multigpumod": [2, 3, 4, 5, 6], "data_parallel": [2, 3, 4, 5], "distributed_data_parallel": [2, 3, 4, 5, 6], "auto": [2, 3, 4, 5], "dict": [2, 3, 4, 5], "upsamplemod": [2, 3, 4], "nearest": [2, 3, 4], "bilinear": [2, 3, 4], "bicub": [2, 3, 4], "snpe_bilinear": [2, 3, 4], "autologgerconfig": [2, 3, 4], "file_logging_level": [2, 3, 4], "console_logging_level": [2, 3, 4], "filenam": [2, 3, 4, 5], "get_inst": [2, 3, 4], "get_log_file_path": [2, 3, 4], "setup_log": [2, 3, 4], "consolesink": [2, 3, 4], "set_loc": [2, 3, 4], "flush": [2, 3, 4], "get_filenam": [2, 3, 4], "register_model": [2, 3, 4], "register_detection_modul": [2, 3, 4], "register_metr": [2, 3, 4], "register_loss": [2, 3, 4], "modul": [2, 3], "super_gradi": [2, 4, 6], "dataaugment": [2, 3, 5], "to_tensor": [2, 3, 5], "cutout": [2, 3, 5], "trainer": [2, 3, 4, 5, 6], "train_from_config": [2, 3, 5], "resume_experi": [2, 3, 5], "evaluate_from_recip": [2, 3, 5], "evaluate_checkpoint": [2, 3, 5], "get_arch_param": [2, 3, 5], "get_structur": [2, 3, 5], "get_architectur": [2, 3, 5], "set_experiment_nam": [2, 3, 5], "get_modul": [2, 3, 5], "set_modul": [2, 3, 5], "evalu": [2, 3, 4, 5], "get_net": [2, 3, 5], "set_net": [2, 3, 5], "set_ckpt_best_nam": [2, 3, 5], "set_ema": [2, 3, 5], "kdtrainer": [2, 3, 5], "listdataset": [2, 3, 5], "directorydataset": [2, 3, 5], "segmentationdataset": [2, 3, 5], "sample_load": [2, 3, 5], "sample_transform": [2, 3, 5], "target_load": [2, 3, 5], "target_transform": [2, 3, 5], "pascalvoc2012segmentationdataset": [2, 3, 5], "ignore_label": [2, 3, 5], "decode_segmentation_mask": [2, 3, 5], "pascalaug2012segmentationdataset": [2, 3, 5], "pascalvocandaugunifieddataset": [2, 3, 5], "cumulative_s": [2, 3, 5], "cocosegmentationdataset": [2, 3, 5], "detectiondataset": [2, 3, 5], "get_random_item": [2, 3, 5], "get_sampl": [2, 3, 5], "get_resized_imag": [2, 3, 5], "apply_transform": [2, 3, 5], "get_random_sampl": [2, 3, 5], "output_target_format": [2, 3, 5], "plot": [2, 3, 5], "cocodetectiondataset": [2, 3, 5], "pascalvocdetectiondataset": [2, 3, 5], "download": [2, 3, 5], "imagenetdataset": [2, 3, 5], "cifar10": [2, 3, 5, 6], "cifar100": [2, 3, 5], "superviselypersonsdataset": [2, 3, 5], "class_label": [2, 3, 5], "dataload": [2, 3], "coco2017_train": [2, 3, 5], "coco2017_v": [2, 3, 5], "coco2017_train_yolox": [2, 3, 5], "coco2017_val_yolox": [2, 3, 5], "coco2017_train_ssd_lite_mobilenet_v2": [2, 3, 5], "coco2017_val_ssd_lite_mobilenet_v2": [2, 3, 5], "imagenet_train": [2, 3, 5], "imagenet_v": [2, 3, 5], "imagenet_efficientnet_train": [2, 3, 5], "imagenet_efficientnet_v": [2, 3, 5], "imagenet_mobilenetv2_train": [2, 3, 5], "imagenet_mobilenetv2_v": [2, 3, 5], "imagenet_mobilenetv3_train": [2, 3, 5], "imagenet_mobilenetv3_v": [2, 3, 5], "imagenet_regnety_train": [2, 3, 5], "imagenet_regnety_v": [2, 3, 5], "imagenet_resnet50_train": [2, 3, 5], "imagenet_resnet50_v": [2, 3, 5], "imagenet_resnet50_kd_train": [2, 3, 5], "imagenet_resnet50_kd_v": [2, 3, 5], "imagenet_vit_base_train": [2, 3, 5], "imagenet_vit_base_v": [2, 3, 5], "tiny_imagenet_train": [2, 3, 5], "tiny_imagenet_v": [2, 3, 5], "cifar10_train": [2, 3, 5], "cifar10_v": [2, 3, 5], "cifar100_train": [2, 3, 5], "cifar100_v": [2, 3, 5], "cityscapes_train": [2, 3, 5], "cityscapes_v": [2, 3, 5], "cityscapes_stdc_seg50_train": [2, 3, 5], "cityscapes_stdc_seg50_v": [2, 3, 5], "cityscapes_stdc_seg75_train": [2, 3, 5], "cityscapes_stdc_seg75_v": [2, 3, 5], "cityscapes_regseg48_train": [2, 3, 5], "cityscapes_regseg48_v": [2, 3, 5], "cityscapes_ddrnet_train": [2, 3, 5], "cityscapes_ddrnet_v": [2, 3, 5], "coco_segmentation_train": [2, 3, 5], "coco_segmentation_v": [2, 3, 5], "pascal_aug_segmentation_train": [2, 3, 5], "pascal_aug_segmentation_v": [2, 3, 5], "pascal_voc_segmentation_train": [2, 3, 5], "pascal_voc_segmentation_v": [2, 3, 5], "supervisely_persons_train": [2, 3, 5], "supervisely_persons_v": [2, 3, 5], "pascal_voc_detection_train": [2, 3, 5], "pascal_voc_detection_v": [2, 3, 5], "get_data_load": [2, 3, 5], "kd_trainer": [2, 3], "legaci": [2, 3], "losses_model": [2, 3], "cross_entropi": [2, 3, 5], "mse": [2, 3, 5], "r_squared_loss": [2, 3, 5], "shelfnet_ohem_loss": [2, 3, 5], "shelfnet_se_loss": [2, 3, 5], "yolox_loss": [2, 3, 5], "yolox_fast_loss": [2, 3, 5], "ssd_loss": [2, 3, 5], "stdc_loss": [2, 3, 5], "bce_dice_loss": [2, 3, 5], "kd_loss": [2, 3, 5], "dice_ce_edge_loss": [2, 3, 5], "focalloss": [2, 3, 5], "reduct": [2, 3, 5], "forward": [2, 3, 5], "labelsmoothingcrossentropyloss": [2, 3, 5], "ignore_index": [2, 3, 5], "label_smooth": [2, 3, 5], "shelfnetohemloss": [2, 3, 5], "component_nam": [2, 3, 5], "shelfnetsemanticencodingloss": [2, 3, 5], "yoloxdetectionloss": [2, 3, 5], "stride": [2, 3, 5], "num_class": [2, 3, 5, 6], "use_l1": [2, 3, 5], "center_sampling_radiu": [2, 3, 5], "iou_typ": [2, 3, 5], "prepare_predict": [2, 3, 5], "get_l1_target": [2, 3, 5], "get_assign": [2, 3, 5], "get_in_boxes_info": [2, 3, 5], "dynamic_k_match": [2, 3, 5], "yoloxfastdetectionloss": [2, 3, 5], "rsquaredloss": [2, 3, 5], "ssdloss": [2, 3, 5], "match_dbox": [2, 3, 5], "bcediceloss": [2, 3, 5], "loss_weight": [2, 3, 5], "kdlogitsloss": [2, 3, 5], "diceceedgeloss": [2, 3, 5], "metric": [2, 3, 6], "accuraci": [2, 3, 5, 6], "top5": [2, 3, 5], "detection_metr": [2, 3, 5], "detection_metrics_050_095": [2, 3, 5], "detection_metrics_050": [2, 3, 5], "detection_metrics_075": [2, 3, 5], "iou": [2, 3, 5], "binary_i": [2, 3, 5], "dice": [2, 3, 5], "binary_dic": [2, 3, 5], "pixel_accuraci": [2, 3, 5], "total": [2, 3, 5], "toytestclassificationmetr": [2, 3, 5], "detectionmetr": [2, 3, 5], "num_cl": [2, 3, 5], "post_prediction_callback": [2, 3, 5], "normalize_target": [2, 3, 5], "iou_threshold": [2, 3, 5], "recall_threshold": [2, 3, 5], "score_threshold": [2, 3, 5], "top_k_predict": [2, 3, 5], "dist_sync_on_step": [2, 3, 5], "preprocesssegmentationmetricsarg": [2, 3, 5], "pixelaccuraci": [2, 3, 5], "confmat": [2, 3, 5], "binaryi": [2, 3, 5], "binarydic": [2, 3, 5], "detectionmetrics_050": [2, 3, 5], "detectionmetrics_075": [2, 3, 5], "detectionmetrics_050_095": [2, 3, 5], "sg_model": [2, 3], "training_hyperparam": [2, 3], "cifar10_resnet_train_param": [2, 3, 5], "cityscapes_ddrnet_train_param": [2, 3, 5], "cityscapes_regseg48_train_param": [2, 3, 5], "cityscapes_stdc_base_train_param": [2, 3, 5], "cityscapes_stdc_seg50_train_param": [2, 3, 5], "cityscapes_stdc_seg75_train_param": [2, 3, 5], "coco2017_ssd_lite_mobilenet_v2_train_param": [2, 3, 5], "coco2017_yolox_train_param": [2, 3, 5], "coco_segmentation_shelfnet_lw_train_param": [2, 3, 5], "imagenet_efficientnet_train_param": [2, 3, 5], "imagenet_mobilenetv2_train_param": [2, 3, 5], "imagenet_mobilenetv3_base_train_param": [2, 3, 5], "imagenet_mobilenetv3_large_train_param": [2, 3, 5], "imagenet_mobilenetv3_small_train_param": [2, 3, 5], "imagenet_regnety_train_param": [2, 3, 5], "imagenet_repvgg_train_param": [2, 3, 5], "imagenet_resnet50_train_param": [2, 3, 5], "imagenet_resnet50_kd_train_param": [2, 3, 5], "imagenet_vit_base_train_param": [2, 3, 5], "imagenet_vit_large_train_param": [2, 3, 5], "segrandomflip": [2, 3, 5], "segres": [2, 3, 5], "segrescal": [2, 3, 5], "segrandomrescal": [2, 3, 5], "segrandomrot": [2, 3, 5], "segcropimageandmask": [2, 3, 5], "segrandomgaussianblur": [2, 3, 5], "segpadshorttocrops": [2, 3, 5], "segcolorjitt": [2, 3, 5], "detectionmosa": [2, 3, 5], "detectionrandomaffin": [2, 3, 5], "detectionmixup": [2, 3, 5], "detectionhsv": [2, 3, 5], "detectionhorizontalflip": [2, 3, 5], "detectionpaddedrescal": [2, 3, 5], "detectiontargetsformat": [2, 3, 5], "detectiontargetsformattransform": [2, 3, 5], "randomresizedcropandinterpol": [2, 3, 5], "randaugmenttransform": [2, 3, 5], "light": [2, 3, 5], "randomeras": [2, 3, 5], "compos": [2, 3, 5], "totensor": [2, 3, 5], "piltotensor": [2, 3, 5], "convertimagedtyp": [2, 3, 5], "topilimag": [2, 3, 5], "resiz": [2, 3, 5], "centercrop": [2, 3, 5], "pad": [2, 3, 5], "lambda": [2, 3, 5], "randomappli": [2, 3, 5], "randomchoic": [2, 3, 5], "randomord": [2, 3, 5], "randomcrop": [2, 3, 5], "randomhorizontalflip": [2, 3, 5], "randomverticalflip": [2, 3, 5], "randomresizedcrop": [2, 3, 5], "fivecrop": [2, 3, 5], "tencrop": [2, 3, 5], "lineartransform": [2, 3, 5], "colorjitt": [2, 3, 5], "randomrot": [2, 3, 5], "randomaffin": [2, 3, 5], "grayscal": [2, 3, 5], "randomgrayscal": [2, 3, 5], "randomperspect": [2, 3, 5], "gaussianblur": [2, 3, 5], "interpolationmod": [2, 3, 5], "randominvert": [2, 3, 5], "randomposter": [2, 3, 5], "randomsolar": [2, 3, 5], "randomadjustsharp": [2, 3, 5], "randomautocontrast": [2, 3, 5], "randomequ": [2, 3, 5], "input_dim": [2, 3, 5], "prob": [2, 3, 5], "enable_mosa": [2, 3, 5], "close": [2, 3, 5], "target_s": [2, 3, 5], "degre": [2, 3, 5], "scale": [2, 3, 5], "shear": [2, 3, 5], "enabl": [2, 3, 5], "filter_box_candid": [2, 3, 5], "wh_thr": [2, 3, 5], "ar_thr": [2, 3, 5], "area_thr": [2, 3, 5], "swap": [2, 3, 5], "output_format": [2, 3, 5], "min_bbox_edge_s": [2, 3, 5], "max_target": [2, 3, 5], "timer": [2, 3, 5], "stop": [2, 3, 5], "hpmstruct": [2, 3, 5], "set_schema": [2, 3, 5], "overrid": [2, 3, 5, 6], "to_dict": [2, 3, 5], "wrappedmodel": [2, 3, 5], "convert_to_tensor": [2, 3, 5], "get_param": [2, 3, 5], "tensor_container_to_devic": [2, 3, 5], "adapt_state_dict_to_fit_model_layer_nam": [2, 3, 5], "raise_informative_runtime_error": [2, 3, 5], "random_se": [2, 3, 5], "torch_version_is_greater_or_equ": [2, 3, 5], "index": [2, 5], "search": [2, 5], "setup": 4, "environ": [4, 6], "handl": [4, 5], "crash": [4, 5], "tip": 4, "option": [4, 5], "callabl": [4, 5], "none": [4, 5], "validation_typ": 4, "str": [4, 5], "cl": 4, "decor": 4, "wrapper": [4, 5], "call": [4, 5, 6], "singl": [4, 5, 6], "instanc": [4, 5], "__wrapped__": 4, "access": [4, 5], "directli": 4, "aw": 4, "credenti": 4, "iam": 4, "role": 4, "static": [4, 5], "profile_nam": 4, "session": 4, "retriev": [4, 5], "param": [4, 5, 6], "config": [4, 5, 6], "profil": 4, "boto3": 4, "service_nam": 4, "client": 4, "resourc": 4, "env": [4, 5], "data_connection_sourc": 4, "s3": 4, "data_connection_loc": 4, "data_connection_credenti": 4, "ilogg": 4, "researchmodelrepositorydatainterfac": 4, "bucket_nam": 4, "content_length": 4, "initi": [4, 5, 6], "It": [4, 6], "resolv": 4, "valu": [4, 5], "enum": [4, 5], "ad": [4, 5], "torch": [4, 5, 6], "strict_load": [4, 5], "load_state_dict": [4, 5], "nativ": [4, 5], "behaviour": [4, 5], "nn": [4, 5], "detail": [4, 5, 6], "allow": [4, 5], "usag": [4, 5], "supergradi": [4, 5], "adapt_checkpoint": [4, 5], "checkpoint": [4, 5, 6], "match": [4, 5], "layer": [4, 5], "shape": [4, 5], "bypass": [4, 5], "strict": [4, 5], "ie": [4, 5], "disregard": [4, 5], "state_dict": [4, 5], "kei": [4, 5], "fals": [4, 5], "true": [4, 5, 6], "enumer": 4, "trigger": [4, 5], "gpu": [4, 5, 6], "mode": [4, 5, 6], "cpu": [4, 5, 6], "multipl": [4, 5], "synchron": [4, 5], "asynchron": [4, 5], "dp": [4, 5], "classmethod": [4, 5], "dictionari": [4, 5], "map": [4, 5], "string": [4, 5], "case": [4, 5], "autom": 4, "log": [4, 5], "debug": 4, "info": [4, 5], "store": [4, 5], "messag": 4, "full": [4, 5, 6], "path": [4, 5, 6], "copy_already_logged_messag": 4, "filemod": 4, "log_level": 4, "auto_log": 4, "sink": 4, "consol": 4, "stream": 4, "stdout": 4, "stderr": 4, "redirect": 4, "anoth": [4, 5], "locat": [4, 5], "forc": [4, 5], "data_connect": 4, "data_interfac": 4, "data_typ": 4, "variabl": [4, 5], "const": 4, "registri": 4, "set": [4, 5, 6], "regist": [4, 5], "specifi": [4, 5, 6], "std": 5, "mask_siz": 5, "p": 5, "cutout_insid": 5, "mask_color": 5, "experiment_nam": [5, 6], "devic": [5, 6], "multi_gpu": 5, "ckpt_root_dir": [5, 6], "sg": [5, 6], "max_epoch": 5, "initial_epoch": 5, "save_model": 5, "main": [5, 6], "h": 5, "etc": 5, "idx": 5, "input": [5, 6], "epoch": 5, "save": [5, 6], "runtim": 5, "cfg": 5, "dictconfig": 5, "tupl": 5, "accord": 5, "pars": 5, "yaml": [5, 6], "output": [5, 6], "e": 5, "resum": 5, "our": [5, 6], "experi": 5, "directori": 5, "note": [5, 6], "NOT": 5, "refer": 5, "pretrain": [5, 6], "zoo": [5, 6], "ckpt_name": 5, "ckpt_latest": 5, "pth": 5, "previou": 5, "valid_metr": 5, "dure": 5, "unchang": 5, "sinc": 5, "exactli": 5, "average_model": 5, "my_experiment_nam": 5, "ckpt_best": 5, "training_param": 5, "train_load": 5, "valid_load": 5, "additional_configs_to_log": 5, "batch": [5, 6], "item": 5, "data": 5, "loader": [5, 6], "context": 5, "Then": 5, "sg_logger": [5, 6], "config_title_1": 5, "config_title_2": 5, "default": [5, 6], "continu": 5, "ckpt": 5, "when": 5, "resume_path": 5, "explicit": 5, "number": 5, "lr_updat": 5, "rate": 5, "lr_mode": 5, "lr_decay_factor": 5, "decai": 5, "factor": 5, "schedul": [5, 6], "polici": 5, "poli": 5, "cosin": 5, "constant": 5, "aneal": 5, "mention": 5, "arxiv": 5, "ab": 5, "1608": 5, "03983": 5, "polynomi": 5, "decreas": 5, "iter": 5, "self": 5, "lr": 5, "initial_lr": 5, "pow": 5, "current_it": 5, "max_it": 5, "user": [5, 6], "lr_schedule_funct": 5, "lr_warmup_epoch": 5, "warm": 5, "pdf": 5, "1706": 5, "02677": 5, "cosine_final_lr_ratio": 5, "01": 5, "final": 5, "ratio": 5, "reach": 5, "last": [5, 6], "inital_lr": 5, "One": 5, "built": 5, "mseloss": 5, "detection_loss": 5, "yolov3detectionloss": 5, "loss_item": 5, "tensor": 5, "backprop": 5, "n_item": 5, "over": 5, "entir": 5, "itself": 5, "alwai": 5, "scenario": 5, "sum": 5, "compon": [5, 6], "would": [5, 6], "like": 5, "entri": 5, "deal": 5, "extern": 5, "logg": 5, "monitor": 5, "properti": 5, "who": 5, "train_param": [5, 6], "length": 5, "ith": 5, "element": 5, "render": 5, "tensorboard": 5, "watch": 5, "loss_class": 5, "__name__": 5, "rather": 5, "loss_": 5, "myloss": 5, "_loss": 5, "target": 5, "total_loss": 5, "comp1": 5, "comp2": 5, "cat": 5, "unsqueez": 5, "detach": 5, "my_1st_compon": 5, "my_2nd_compon": 5, "metric_to_watch": 5, "myloss2": 5, "loss_0": 5, "loss_1": 5, "loss_2": 5, "thei": [5, 6], "posit": 5, "some": 5, "intern": 5, "graph": 5, "memori": [5, 6], "effici": 5, "optim": [5, 6], "algorithm": 5, "adam": 5, "sgd": 5, "rmsprop": 5, "correspond": 5, "optimz": 5, "criterion_param": 5, "optimizer_param": 5, "pytorch": [5, 6], "stabl": [5, 6], "train_metrics_list": 5, "torchmetr": 5, "rtfd": 5, "en": 5, "latest": 5, "valid_metrics_list": 5, "loss_logging_items_nam": 5, "remind": 5, "These": [5, 6], "metric_nam": [5, 6], "size": [5, 6], "n": 5, "At": 5, "best": [5, 6], "achiev": [5, 6], "your_python_path": 5, "greater_metric_to_watch_is_bett": 5, "maxim": 5, "minim": 5, "ema": 5, "exponenti": 5, "move": 5, "averag": 5, "com": [5, 6], "rwightman": 5, "batch_accumul": 5, "accumul": 5, "befor": [5, 6], "everi": 5, "backward": 5, "ema_param": 5, "zero_weight_decay_on_bias_and_bn": 5, "ignor": 5, "alreadi": 5, "load_opt_param": 5, "well": 5, "run_validation_freq": 5, "frequenc": 5, "ran": 5, "silent_mod": 5, "silent": 5, "mixed_precis": 5, "mix": 5, "precis": 5, "save_ckpt_epoch_list": 5, "wish": 5, "average_best_model": 5, "snapshot": 5, "complet": 5, "delet": 5, "upon": 5, "precise_bn": 5, "precise_bn_batch_s": 5, "effect": 5, "want": [5, 6], "batchnorm": 5, "8": [5, 6], "128": 5, "good": [5, 6], "rule": 5, "thumb": 5, "8192": 5, "effective_batch_s": 5, "num_gpu": [5, 6], "batch_per_gpu": 5, "latter": 5, "heurist": 5, "taken": [5, 6], "seed": 5, "42": 5, "random": 5, "numpi": 5, "process": 5, "rank": 5, "log_installed_packag": 5, "logfil": 5, "try": [5, 6], "dataset_statist": 5, "statist": 5, "analysi": 5, "analyz": 5, "report": [5, 6], "sampl": 5, "abstractsglogg": 5, "defaul": 5, "base_sg_logg": 5, "sglogger": 5, "disk": 5, "storag": 5, "By": 5, "sg_logger_param": [5, 6], "clip_grad_norm": 5, "l2": 5, "norm": 5, "exce": 5, "given": 5, "clip": 5, "lr_cooldown_epoch": 5, "cooldown": 5, "view": 5, "point": 5, "pre_prediction_callback": 5, "order": 5, "batch_idx": 5, "modified_input": 5, "modified_target": 5, "ckpt_best_nam": 5, "enable_qat": 5, "qatcallback": 5, "quantiz": [5, 6], "awar": [5, 6], "qat_param": 5, "start_epoch": 5, "qat": [5, 6], "quant_modules_calib_method": 5, "percentil": 5, "entropi": 5, "max": [5, 6], "amax": 5, "per_channel_quant_modul": 5, "quant": 5, "per": 5, "channel": [5, 6], "calibr": 5, "perfrom": 5, "calibrated_model_path": 5, "calib_data_load": 5, "num_calib_batch": 5, "collect": 5, "discard": 5, "99": 5, "test_load": 5, "test_metrics_list": 5, "metrics_progress_verbos": 5, "test_phase_callback": 5, "use_ema_net": 5, "net": 5, "defalut": 5, "verbos": [5, 6], "progress": [5, 6], "slow": 5, "down": 5, "program": 5, "ema_model": 5, "exist": 5, "equal": 5, "test_metr": 5, "data_load": 5, "metriccollect": 5, "evaluation_typ": 5, "evaluataion": 5, "validation_batch_end": 5, "significantli": 5, "getter": 5, "network": [5, 6], "setter": 5, "val": 5, "kdmodul": 5, "student": [5, 6], "sgmodul": 5, "teacher": [5, 6], "kd_architectur": 5, "kd_modul": 5, "kd_arch_param": 5, "run_teacher_on_ev": 5, "kwarg": 5, "wrap": 5, "pa": 5, "constructor": 5, "eval": [5, 6], "regardless": 5, "root": 5, "default_load": 5, "collate_fn": 5, "sample_extens": 5, "jpg": 5, "jpeg": 5, "png": 5, "ppm": 5, "bmp": 5, "pgm": 5, "tif": 5, "tiff": 5, "webp": 5, "target_extens": 5, "npy": 5, "basesgvisiondataset": 5, "assumpt": 5, "That": [5, 6], "class_x": 5, "sample1": 5, "class_i": 5, "sample123": 5, "ext": 5, "samples_sub_directori": 5, "targets_sub_directori": 5, "dir": 5, "sub": 5, "list_fil": 5, "cache_label": 5, "cache_imag": 5, "sample_path": 5, "pil": 5, "home": 5, "ofri": 5, "conda": 5, "lib": 5, "python3": 5, "site": 5, "py": 5, "target_path": 5, "mask": 5, "sample_suffix": 5, "target_suffix": 5, "pascal": 5, "voc": 5, "2012": 5, "21": 5, "pixel": 5, "255": 5, "done": 5, "high": 5, "oom": 5, "label_mask": 5, "ndarrai": 5, "decod": 5, "color": 5, "m": [5, 6], "arrai": 5, "integ": 5, "denot": 5, "spatial": 5, "aug": 5, "concatdataset": 5, "aka": 5, "sbd": 5, "contour": 5, "invers": 5, "detector": [5, 6], "pascalvoc": 5, "unifi": 5, "augment": 5, "trainset": 5, "10": [5, 6], "582": 5, "duplic": 5, "t_co": 5, "root_dir": 5, "dataset_classes_inclusion_tuples_list": 5, "coco": [5, 6], "2017": 5, "mask_metadata_tupl": 5, "coco_image_id": 5, "original_image_height": 5, "original_image_width": 5, "data_dir": [5, 6], "original_target_format": 5, "max_num_sampl": 5, "cach": 5, "cache_dir": 5, "detectiontransform": 5, "all_classes_list": 5, "class_inclusion_list": 5, "ignore_empty_annot": 5, "target_field": 5, "output_field": 5, "facilit": 5, "TO": 5, "THAT": 5, "inherit": [5, 6], "_load_annot": 5, "img_path": 5, "__init__": [5, 6], "ideal": 5, "workflow": 5, "On": 5, "instanti": [5, 6], "subclass": 5, "__getitem__": 5, "group": 5, "togeth": 5, "th": 5, "terminologi": 5, "groundtruth": 5, "bbox": 5, "vari": 5, "metadata": 5, "crowd_target": 5, "image_info": 5, "outout": 5, "id": 5, "drope": 5, "annotaion": 5, "let": 5, "imagin": 5, "situat": 5, "120": 5, "20": 5, "were": 5, "drop": 5, "becaus": 5, "had": 5, "sample_id": 5, "119": 5, "But": 5, "100": [5, 6], "therefor": 5, "len": 5, "raw": 5, "besid": 5, "width": [5, 6], "height": [5, 6], "cached_imgs_pad": 5, "sequenti": 5, "additional_samples_count": 5, "additional_sampl": 5, "prior": 5, "non_empty_annot": 5, "count": 5, "non_empty_annotations_onli": 5, "satisfi": 5, "max_samples_per_plot": 5, "16": 5, "n_plot": 5, "plot_transformed_data": 5, "maximum": 5, "being": 5, "img": 5, "after": 5, "json_fil": 5, "instances_train2017": 5, "json": 5, "subdir": 5, "train2017": 5, "tight_box_rot": 5, "with_crowd": 5, "images_sub_directori": 5, "xyxy_label": 5, "extract": 5, "robot": 5, "ox": 5, "ac": 5, "uk": 5, "imagefold": 5, "torchvis": 5, "supervis": 5, "person": 5, "resolut": [5, 6], "600": 5, "x": [5, 6], "800": 5, "subset": 5, "filter": 5, "about": [5, 6], "app": 5, "ly": 5, "ecosystem": 5, "project": [5, 6], "paddlepaddl": 5, "paddleseg": 5, "releas": [5, 6], "contrib": [5, 6], "pp": [5, 6], "humanseg": 5, "background": 5, "dataset_param": 5, "dataloader_param": 5, "config_nam": 5, "imagenet_dataset_param": 5, "tiny_imagenet_dataset_param": 5, "dataset_cl": 5, "take": [5, 6], "src": 5, "coco2017_yolox": 5, "uniniti": 5, "train_dataloader_param": 5, "valid_dataloader_param": 5, "train_dataset_param": 5, "valid_dataset_param": 5, "contructor": 5, "all_dataload": 5, "instead": 5, "loss_fcn": 5, "bcewithlogitsloss": 5, "gamma": 5, "5": [5, 6], "alpha": 5, "25": 5, "focal": 5, "around": 5, "criteria": 5, "pred": 5, "overridden": 5, "although": 5, "need": [5, 6], "afterward": 5, "former": 5, "care": 5, "hook": 5, "smooth_ep": 5, "smooth_dist": 5, "from_logit": 5, "crossentropyloss": 5, "abil": 5, "reciev": 5, "distrbut": 5, "smooth": 5, "threshold": 5, "7": [5, 6], "mining_perc": 5, "0001": 5, "ignore_lb": 5, "ohemceloss": 5, "predictions_list": 5, "2nd": 5, "se_weight": 5, "nclass": 5, "aux_weight": 5, "4": [5, 6], "2d": 5, "auxilari": 5, "logit": 5, "yolox": [5, 6], "l": 5, "l_objectiv": 5, "l_iou": 5, "l_classif": 5, "l_l1": 5, "cell": 5, "suit": 5, "suitabl": 5, "ground": 5, "truth": 5, "grid": 5, "bce": 5, "gt": 5, "multi": 5, "wai": [5, 6], "coef": 5, "box": 5, "l1": 5, "distanc": 5, "op": 5, "l_object": 5, "assign": 5, "yolo": 5, "level": 5, "32": 5, "radiu": 5, "center": 5, "fg": 5, "giou": 5, "deafult": 5, "model_output": 5, "gridsizei": 5, "gridsizex": 5, "num_target": 5, "dim": 5, "y": 5, "w": [5, 6], "convert": [5, 6], "x_shift": 5, "num_cel": 5, "grid1x": 5, "grid1i": 5, "grid2x": 5, "grid2i": 5, "grid3x": 5, "grid3i": 5, "coordin": 5, "y_shift": 5, "expanded_strid": 5, "transformed_output": 5, "batch_siz": 5, "real": 5, "logprob": 5, "raw_output": 5, "confid": 5, "l1_target": 5, "ep": 5, "1e": 5, "08": [5, 6], "zero": 5, "num_cell_gt_pair": 5, "image_idx": 5, "num_gt": 5, "total_num_anchor": 5, "gt_bboxes_per_imag": 5, "gt_class": 5, "bboxes_preds_per_imag": 5, "cls_pred": 5, "obj_pr": 5, "ious_loss_cost_coeff": 5, "outside_boxes_and_center_cost_coeff": 5, "100000": 5, "most": [5, 6], "dynam": 5, "cost": 5, "coeffici": 5, "trunth": 5, "tesnor": 5, "num_pr": 5, "oper": 5, "foreground": 5, "withing": 5, "is_in_boxes_anchor": 5, "is_in_boxes_and_cent": 5, "insid": 5, "awai": 5, "num_fg": 5, "pair_wise_i": 5, "fg_mask": 5, "pairwis": 5, "gt_matched_class": 5, "pred_ious_this_match": 5, "matched_gt_ind": 5, "dynamic_ks_bia": 5, "sync_num_fg": 5, "obj_loss_fix": 5, "equival": 5, "regular": 5, "avoid": 5, "loop": 5, "compar": 5, "nest": 5, "As": 5, "much": 5, "faster": 5, "speedup": 5, "depend": 5, "veri": 5, "anchor": 5, "There": 5, "k": 5, "consid": 5, "top": 5, "sort": 5, "among": 5, "compens": 5, "introduc": 5, "hyperparamt": 5, "larger": 5, "candid": 5, "believ": 5, "minor": 5, "hyperparamet": 5, "discrep": 5, "sync": 5, "num": 5, "devid": 5, "size_averag": 5, "reduc": 5, "r": 5, "squar": 5, "labl": 5, "dbox": 5, "defaultbox": 5, "iou_thresh": 5, "neg_pos_ratio": 5, "neg": 5, "mine": 5, "l_cl": 5, "hardminingcrossentropyloss": 5, "smoothl1loss": 5, "highest": 5, "pair": 5, "rest": 5, "met": 5, "wise": 5, "mani": 5, "num_box": 5, "6": 5, "image_id": 5, "num_dbox": 5, "sahp": 5, "binari": 5, "respect": 5, "task_loss_fn": 5, "distillation_loss_fn": 5, "kdkldivloss": 5, "distillation_loss_coeff": 5, "kd_module_output": 5, "num_aux_head": 5, "num_detail_head": 5, "dice_ce_weight": 5, "edge_kernel": 5, "ce_edge_weight": 5, "feat": 5, "aux": 5, "num_aux": 5, "num_detail": 5, "topk": 5, "g": 5, "probabl": [5, 6], "across": 5, "backend": 5, "dummi": 5, "mettric": 5, "detectionpostpredictioncallback": 5, "iou_thr": 5, "iouthreshold": 5, "map_05_to_095": 5, "recall_thr": 5, "score_thr": 5, "accumulate_on_cpu": 5, "f1": 5, "recal": 5, "nm": 5, "linspac": 5, "95": 5, "101": 5, "score": [5, 6], "cuda": [5, 6], "happen": 5, "accordingli": 5, "total_num_target": 5, "rang": 5, "n_img": 5, "crowd": 5, "interest": 5, "apply_arg_max": 5, "apply_sigmoid": 5, "abstractmetricsargsprepfn": 5, "preprocess": 5, "metrics_args_prep_fn": 5, "elementwise_mean": 5, "jaccardindex": 5, "intersect": 5, "sg_trainer": 5, "overriding_param": 5, "hyper": [5, 6], "dimens": [5, 6], "mosaic": 5, "640": [5, 6], "rotat": 5, "drawn": 5, "uniformli": 5, "rescal": 5, "edg": [5, 6], "area": 5, "aspect": 5, "bound": 5, "smaller": [5, 6], "hgain": 5, "sgain": 5, "vgain": 5, "bgr_channel": 5, "hsv": 5, "pad_valu": 5, "114": 5, "xyxi": 5, "cxcywh": 5, "axi": 5, "rearrang": 5, "input_format": 5, "label_cxcywh": 5, "lower": 5, "remov": 5, "measur": 5, "time": [5, 6], "both": 5, "millisecond": 5, "schema": 5, "include_schema": 5, "represent": 5, "attributeerror": 5, "jsonschema": 5, "validationerror": 5, "invalid": 5, "schemaerror": 5, "itselfi": 5, "default_v": 5, "found": [5, 6], "default_opt_param": 5, "momentum": 5, "001": 5, "typic": 5, "obj": 5, "non_block": 5, "recurs": 5, "send": 5, "compound": 5, "structur": 5, "distributeddataparallel": 5, "pointer": 5, "model_state_dict": 5, "source_ckpt": 5, "solver": 5, "tri": 5, "properli": 5, "unsuccess": 5, "signatur": 5, "ckpt_kei": 5, "ckpt_val": 5, "model_kei": 5, "model_v": 5, "renam": 5, "exception_msg": 5, "enhanc": 5, "checkpoint_dict": 5, "via": 5, "is_ddp": 5, "device_numb": 5, "major": 5, "fine": 6, "tune": 6, "deep": 6, "websit": 6, "guid": 6, "yolox_": 6, "pretrained_weight": 6, "practic": 6, "go": 6, "python": 6, "train_from_recip": 6, "imagenet_regneti": 6, "regnety800": 6, "dataset_interfac": 6, "your_imagenet_local_path": 6, "chekpoint_directori": 6, "why": 6, "sens": 6, "compat": 6, "deploy": 6, "tensorrt": 6, "nvidia": 6, "openvino": 6, "intel": 6, "With": 6, "codebas": 6, "standart": 6, "prep_model_for_convers": 6, "input_s": 6, "dummy_input": 6, "onnx": 6, "export": 6, "06": 6, "liteseg": 6, "cityscap": 6, "miou": 6, "paper": 6, "07": 6, "ddrnet23": 6, "27": 6, "ssd": 6, "lite": 6, "mobilenet": 6, "v2": 6, "v1": 6, "tailor": 6, "stdc": 6, "check": 6, "capabl": 6, "profession": 6, "straightforward": 6, "machin": 6, "techniqu": 6, "larg": 6, "beit": 6, "resnet18": 6, "colab": 6, "tutori": 6, "hardwar": 6, "aggreg": 6, "aforement": 6, "rain": 6, "recomend": 6, "flexibl": 6, "ones": 6, "distributed_training_util": 6, "setup_gpu_mod": 6, "launch": 6, "node": 6, "gpu_mod": 6, "anyth": 6, "els": 6, "default_resnet18": 6, "imagenet": 6, "turn": 6, "droppath": 6, "droppath_resnet18": 6, "arch_param": 6, "droppath_prob": 6, "classifi": 6, "head": 6, "stage": 6, "global": 6, "pool": 6, "backbone_resnet18": 6, "backbone_mod": 6, "lr_schedul": 6, "reducelronplateau": 6, "lrschedulercallback": 6, "classification_metr": 6, "rop_lr_schedul": 6, "patienc": 6, "fire": 6, "phase_callback": 6, "validation_epoch_end": 6, "look": 6, "declar": 6, "wandb_sg_logg": 6, "logger": 6, "wandbsglogg": 6, "parament": 6, "project_nam": 6, "save_checkpoints_remot": 6, "save_tensorboard_remot": 6, "save_logs_remot": 6, "txt": 6, "toolkit": 6, "11": 6, "cudnn": 6, "driver": 6, "460": 6, "pypi": 6, "git": 6, "densnet": 6, "dens": 6, "convolut": 6, "dpn": 6, "efficientnet": 6, "lenet": 6, "v3": 6, "pnasnet": 6, "activ": 6, "resnet": 6, "regnet": 6, "repvgg": 6, "resnext": 6, "senet": 6, "shufflenet": 6, "vgg": 6, "ddrnet": 6, "dual": 6, "laddernet": 6, "regseg": 6, "shelfnet": 6, "csp": 6, "darknet": 6, "53": 6, "shot": 6, "awesom": 6, "rock": 6, "librari": 6, "benchmark": 6, "research": 6, "cite": 6, "grow": 6, "hear": 6, "excit": 6, "help": 6, "love": 6, "aboard": 6, "slack": 6, "ask": 6, "question": 6, "click": 6, "join": 6, "newslett": 6, "stai": 6, "announc": 6, "upcom": 6, "short": 6, "trial": 6, "enjoi": 6, "immedi": 6, "throughput": 6, "latenc": 6, "footprint": 6, "gain": 6, "10x": 6, "invit": 6, "co": 6, "worker": 6, "collabor": 6, "framework": 6, "jetson": 6}, "objects": {"super_gradients": [[4, 0, 0, "-", "common"], [5, 0, 0, "-", "training"]], "super_gradients.common": [[4, 1, 1, "", "ADNNModelRepositoryDataInterfaces"], [4, 1, 1, "", "AWSConnector"], [4, 1, 1, "", "AutoLoggerConfig"], [4, 1, 1, "", "DatasetDataInterface"], [4, 1, 1, "", "DeepLearningTask"], [4, 1, 1, "", "EvaluationType"], [4, 1, 1, "", "MultiGPUMode"], [4, 1, 1, "", "S3Connector"], [4, 1, 1, "", "StrictLoad"], [4, 1, 1, "", "UpsampleMode"], [4, 0, 0, "-", "auto_logging"], [4, 0, 0, "-", "data_connection"], [4, 0, 0, "-", "data_interface"], [4, 0, 0, "-", "data_types"], [4, 0, 0, "-", "decorators"], [4, 0, 0, "-", "environment"], [4, 4, 1, "", "explicit_params_validation"], [4, 0, 0, "-", "factories"], [4, 4, 1, "", "init_trainer"], [4, 4, 1, "", "is_distributed"], [4, 0, 0, "-", "plugins"], [4, 0, 0, "-", "registry"], [4, 4, 1, "", "setup_crash_handler"], [4, 0, 0, "-", "sg_loggers"], [4, 4, 1, "", "singleton"]], "super_gradients.common.ADNNModelRepositoryDataInterfaces": [[4, 2, 1, "", "load_all_remote_log_files"], [4, 2, 1, "", "load_remote_checkpoints_file"], [4, 2, 1, "", "load_remote_logging_files"], [4, 2, 1, "", "save_all_remote_checkpoint_files"], [4, 2, 1, "", "save_remote_checkpoints_file"], [4, 2, 1, "", "save_remote_tensorboard_event_files"]], "super_gradients.common.AWSConnector": [[4, 2, 1, "", "get_aws_client_for_service_name"], [4, 2, 1, "", "get_aws_resource_for_service_name"], [4, 2, 1, "", "get_aws_session"], [4, 2, 1, "", "is_client_error"]], "super_gradients.common.AutoLoggerConfig": [[4, 3, 1, "", "CONSOLE_LOGGING_LEVEL"], [4, 3, 1, "", "FILE_LOGGING_LEVEL"], [4, 3, 1, "", "filename"], [4, 2, 1, "", "get_instance"], [4, 2, 1, "", "get_log_file_path"], [4, 2, 1, "", "setup_logging"]], "super_gradients.common.DatasetDataInterface": [[4, 2, 1, "", "load_remote_dataset_file"]], "super_gradients.common.DeepLearningTask": [[4, 3, 1, "", "CLASSIFICATION"], [4, 3, 1, "", "DEPTH_ESTIMATION"], [4, 3, 1, "", "NLP"], [4, 3, 1, "", "OBJECT_DETECTION"], [4, 3, 1, "", "OTHER"], [4, 3, 1, "", "POSE_ESTIMATION"], [4, 3, 1, "", "SEMANTIC_SEGMENTATION"]], "super_gradients.common.EvaluationType": [[4, 3, 1, "", "TEST"], [4, 3, 1, "", "VALIDATION"]], "super_gradients.common.MultiGPUMode": [[4, 3, 1, "", "AUTO"], [4, 3, 1, "", "DATA_PARALLEL"], [4, 3, 1, "", "DISTRIBUTED_DATA_PARALLEL"], [4, 3, 1, "", "OFF"], [4, 2, 1, "", "dict"]], "super_gradients.common.S3Connector": [[4, 2, 1, "", "check_key_exists"], [4, 2, 1, "", "convert_content_length_to_mb"], [4, 2, 1, "", "copy_key"], [4, 2, 1, "", "create_bucket"], [4, 2, 1, "", "create_presigned_download_url"], [4, 2, 1, "", "create_presigned_upload_url"], [4, 2, 1, "", "delete_bucket"], [4, 2, 1, "", "delete_key"], [4, 2, 1, "", "download_file_by_path"], [4, 2, 1, "", "download_key"], [4, 2, 1, "", "download_keys_by_prefix"], [4, 2, 1, "", "empty_folder_content_by_path_prefix"], [4, 2, 1, "", "get_object_by_etag"], [4, 2, 1, "", "get_object_metadata"], [4, 2, 1, "", "list_bucket_objects"], [4, 2, 1, "", "upload_buffer"], [4, 2, 1, "", "upload_file"], [4, 2, 1, "", "upload_file_from_stream"]], "super_gradients.common.StrictLoad": [[4, 3, 1, "", "NO_KEY_MATCHING"], [4, 3, 1, "", "OFF"], [4, 3, 1, "", "ON"]], "super_gradients.common.UpsampleMode": [[4, 3, 1, "", "BICUBIC"], [4, 3, 1, "", "BILINEAR"], [4, 3, 1, "", "NEAREST"], [4, 3, 1, "", "SNPE_BILINEAR"]], "super_gradients.common.auto_logging": [[4, 1, 1, "", "AutoLoggerConfig"], [4, 1, 1, "", "ConsoleSink"]], "super_gradients.common.auto_logging.AutoLoggerConfig": [[4, 3, 1, "", "CONSOLE_LOGGING_LEVEL"], [4, 3, 1, "", "FILE_LOGGING_LEVEL"], [4, 3, 1, "", "filename"], [4, 2, 1, "", "get_instance"], [4, 2, 1, "", "get_log_file_path"], [4, 2, 1, "", "setup_logging"]], "super_gradients.common.auto_logging.ConsoleSink": [[4, 2, 1, "", "flush"], [4, 2, 1, "", "get_filename"], [4, 2, 1, "", "set_location"]], "super_gradients.common.data_connection": [[4, 1, 1, "", "S3Connector"]], "super_gradients.common.data_connection.S3Connector": [[4, 2, 1, "", "check_key_exists"], [4, 2, 1, "", "convert_content_length_to_mb"], [4, 2, 1, "", "copy_key"], [4, 2, 1, "", "create_bucket"], [4, 2, 1, "", "create_presigned_download_url"], [4, 2, 1, "", "create_presigned_upload_url"], [4, 2, 1, "", "delete_bucket"], [4, 2, 1, "", "delete_key"], [4, 2, 1, "", "download_file_by_path"], [4, 2, 1, "", "download_key"], [4, 2, 1, "", "download_keys_by_prefix"], [4, 2, 1, "", "empty_folder_content_by_path_prefix"], [4, 2, 1, "", "get_object_by_etag"], [4, 2, 1, "", "get_object_metadata"], [4, 2, 1, "", "list_bucket_objects"], [4, 2, 1, "", "upload_buffer"], [4, 2, 1, "", "upload_file"], [4, 2, 1, "", "upload_file_from_stream"]], "super_gradients.common.data_interface": [[4, 1, 1, "", "ADNNModelRepositoryDataInterfaces"], [4, 1, 1, "", "DatasetDataInterface"]], "super_gradients.common.data_interface.ADNNModelRepositoryDataInterfaces": [[4, 2, 1, "", "load_all_remote_log_files"], [4, 2, 1, "", "load_remote_checkpoints_file"], [4, 2, 1, "", "load_remote_logging_files"], [4, 2, 1, "", "save_all_remote_checkpoint_files"], [4, 2, 1, "", "save_remote_checkpoints_file"], [4, 2, 1, "", "save_remote_tensorboard_event_files"]], "super_gradients.common.data_interface.DatasetDataInterface": [[4, 2, 1, "", "load_remote_dataset_file"]], "super_gradients.common.data_types": [[4, 1, 1, "", "DeepLearningTask"], [4, 1, 1, "", "EvaluationType"], [4, 1, 1, "", "MultiGPUMode"], [4, 1, 1, "", "StrictLoad"], [4, 1, 1, "", "UpsampleMode"]], "super_gradients.common.data_types.DeepLearningTask": [[4, 3, 1, "", "CLASSIFICATION"], [4, 3, 1, "", "DEPTH_ESTIMATION"], [4, 3, 1, "", "NLP"], [4, 3, 1, "", "OBJECT_DETECTION"], [4, 3, 1, "", "OTHER"], [4, 3, 1, "", "POSE_ESTIMATION"], [4, 3, 1, "", "SEMANTIC_SEGMENTATION"]], "super_gradients.common.data_types.EvaluationType": [[4, 3, 1, "", "TEST"], [4, 3, 1, "", "VALIDATION"]], "super_gradients.common.data_types.MultiGPUMode": [[4, 3, 1, "", "AUTO"], [4, 3, 1, "", "DATA_PARALLEL"], [4, 3, 1, "", "DISTRIBUTED_DATA_PARALLEL"], [4, 3, 1, "", "OFF"], [4, 2, 1, "", "dict"]], "super_gradients.common.data_types.StrictLoad": [[4, 3, 1, "", "NO_KEY_MATCHING"], [4, 3, 1, "", "OFF"], [4, 3, 1, "", "ON"]], "super_gradients.common.data_types.UpsampleMode": [[4, 3, 1, "", "BICUBIC"], [4, 3, 1, "", "BILINEAR"], [4, 3, 1, "", "NEAREST"], [4, 3, 1, "", "SNPE_BILINEAR"]], "super_gradients.common.decorators": [[4, 4, 1, "", "explicit_params_validation"], [4, 4, 1, "", "singleton"]], "super_gradients.common.environment": [[4, 4, 1, "", "init_trainer"], [4, 4, 1, "", "is_distributed"]], "super_gradients.common.registry": [[4, 4, 1, "", "register_detection_module"], [4, 4, 1, "", "register_loss"], [4, 4, 1, "", "register_metric"], [4, 4, 1, "", "register_model"]], "super_gradients.training": [[5, 1, 1, "", "DataAugmentation"], [5, 1, 1, "", "EvaluationType"], [5, 1, 1, "", "KDTrainer"], [5, 1, 1, "", "MultiGPUMode"], [5, 1, 1, "", "StrictLoad"], [5, 1, 1, "", "Trainer"], [5, 0, 0, "-", "dataloaders"], [5, 0, 0, "-", "datasets"], [5, 0, 0, "-", "exceptions"], [5, 0, 0, "-", "kd_trainer"], [5, 0, 0, "-", "legacy"], [5, 0, 0, "-", "losses"], [5, 0, 0, "-", "metrics"], [5, 0, 0, "-", "models"], [5, 0, 0, "-", "sg_trainer"], [5, 0, 0, "-", "training_hyperparams"], [5, 0, 0, "-", "transforms"], [5, 0, 0, "-", "utils"]], "super_gradients.training.DataAugmentation": [[5, 2, 1, "", "cutout"], [5, 2, 1, "", "normalize"], [5, 2, 1, "", "to_tensor"]], "super_gradients.training.EvaluationType": [[5, 3, 1, "", "TEST"], [5, 3, 1, "", "VALIDATION"]], "super_gradients.training.KDTrainer": [[5, 2, 1, "", "train"], [5, 2, 1, "", "train_from_config"]], "super_gradients.training.MultiGPUMode": [[5, 3, 1, "", "AUTO"], [5, 3, 1, "", "DATA_PARALLEL"], [5, 3, 1, "", "DISTRIBUTED_DATA_PARALLEL"], [5, 3, 1, "", "OFF"], [5, 2, 1, "", "dict"]], "super_gradients.training.StrictLoad": [[5, 3, 1, "", "NO_KEY_MATCHING"], [5, 3, 1, "", "OFF"], [5, 3, 1, "", "ON"]], "super_gradients.training.Trainer": [[5, 2, 1, "", "evaluate"], [5, 2, 1, "", "evaluate_checkpoint"], [5, 2, 1, "", "evaluate_from_recipe"], [5, 5, 1, "", "get_arch_params"], [5, 5, 1, "", "get_architecture"], [5, 5, 1, "", "get_module"], [5, 5, 1, "", "get_net"], [5, 5, 1, "", "get_structure"], [5, 2, 1, "", "predict"], [5, 2, 1, "", "resume_experiment"], [5, 2, 1, "", "set_ckpt_best_name"], [5, 2, 1, "", "set_ema"], [5, 2, 1, "", "set_experiment_name"], [5, 2, 1, "", "set_module"], [5, 2, 1, "", "set_net"], [5, 2, 1, "", "test"], [5, 2, 1, "id0", "train"], [5, 2, 1, "", "train_from_config"]], "super_gradients.training.dataloaders": [[5, 4, 1, "", "cifar100_train"], [5, 4, 1, "", "cifar100_val"], [5, 4, 1, "", "cifar10_train"], [5, 4, 1, "", "cifar10_val"], [5, 4, 1, "", "cityscapes_ddrnet_train"], [5, 4, 1, "", "cityscapes_ddrnet_val"], [5, 4, 1, "", "cityscapes_regseg48_train"], [5, 4, 1, "", "cityscapes_regseg48_val"], [5, 4, 1, "", "cityscapes_stdc_seg50_train"], [5, 4, 1, "", "cityscapes_stdc_seg50_val"], [5, 4, 1, "", "cityscapes_stdc_seg75_train"], [5, 4, 1, "", "cityscapes_stdc_seg75_val"], [5, 4, 1, "", "cityscapes_train"], [5, 4, 1, "", "cityscapes_val"], [5, 4, 1, "", "coco2017_train"], [5, 4, 1, "", "coco2017_train_ssd_lite_mobilenet_v2"], [5, 4, 1, "", "coco2017_train_yolox"], [5, 4, 1, "", "coco2017_val"], [5, 4, 1, "", "coco2017_val_ssd_lite_mobilenet_v2"], [5, 4, 1, "", "coco2017_val_yolox"], [5, 4, 1, "", "coco_segmentation_train"], [5, 4, 1, "", "coco_segmentation_val"], [5, 4, 1, "", "get"], [5, 4, 1, "", "get_data_loader"], [5, 4, 1, "", "imagenet_efficientnet_train"], [5, 4, 1, "", "imagenet_efficientnet_val"], [5, 4, 1, "", "imagenet_mobilenetv2_train"], [5, 4, 1, "", "imagenet_mobilenetv2_val"], [5, 4, 1, "", "imagenet_mobilenetv3_train"], [5, 4, 1, "", "imagenet_mobilenetv3_val"], [5, 4, 1, "", "imagenet_regnetY_train"], [5, 4, 1, "", "imagenet_regnetY_val"], [5, 4, 1, "", "imagenet_resnet50_kd_train"], [5, 4, 1, "", "imagenet_resnet50_kd_val"], [5, 4, 1, "", "imagenet_resnet50_train"], [5, 4, 1, "", "imagenet_resnet50_val"], [5, 4, 1, "", "imagenet_train"], [5, 4, 1, "", "imagenet_val"], [5, 4, 1, "", "imagenet_vit_base_train"], [5, 4, 1, "", "imagenet_vit_base_val"], [5, 4, 1, "", "pascal_aug_segmentation_train"], [5, 4, 1, "", "pascal_aug_segmentation_val"], [5, 4, 1, "", "pascal_voc_detection_train"], [5, 4, 1, "", "pascal_voc_detection_val"], [5, 4, 1, "", "pascal_voc_segmentation_train"], [5, 4, 1, "", "pascal_voc_segmentation_val"], [5, 4, 1, "", "supervisely_persons_train"], [5, 4, 1, "", "supervisely_persons_val"], [5, 4, 1, "", "tiny_imagenet_train"], [5, 4, 1, "", "tiny_imagenet_val"]], "super_gradients.training.datasets": [[5, 1, 1, "", "COCODetectionDataset"], [5, 1, 1, "", "Cifar10"], [5, 1, 1, "", "Cifar100"], [5, 1, 1, "", "CoCoSegmentationDataSet"], [5, 1, 1, "", "DataAugmentation"], [5, 1, 1, "", "DetectionDataset"], [5, 1, 1, "", "DirectoryDataSet"], [5, 1, 1, "", "ImageNetDataset"], [5, 1, 1, "", "ListDataset"], [5, 1, 1, "", "PascalAUG2012SegmentationDataSet"], [5, 1, 1, "", "PascalVOC2012SegmentationDataSet"], [5, 1, 1, "", "PascalVOCAndAUGUnifiedDataset"], [5, 1, 1, "", "PascalVOCDetectionDataset"], [5, 1, 1, "", "SegmentationDataSet"], [5, 1, 1, "", "SuperviselyPersonsDataset"]], "super_gradients.training.datasets.CoCoSegmentationDataSet": [[5, 2, 1, "", "target_loader"]], "super_gradients.training.datasets.DataAugmentation": [[5, 2, 1, "", "cutout"], [5, 2, 1, "", "normalize"], [5, 2, 1, "", "to_tensor"]], "super_gradients.training.datasets.DetectionDataset": [[5, 2, 1, "", "apply_transforms"], [5, 2, 1, "", "get_random_item"], [5, 2, 1, "", "get_random_sample"], [5, 2, 1, "", "get_random_samples"], [5, 2, 1, "", "get_resized_image"], [5, 2, 1, "", "get_sample"], [5, 5, 1, "", "output_target_format"], [5, 2, 1, "", "plot"]], "super_gradients.training.datasets.PascalAUG2012SegmentationDataSet": [[5, 2, 1, "", "target_loader"]], "super_gradients.training.datasets.PascalVOC2012SegmentationDataSet": [[5, 3, 1, "", "IGNORE_LABEL"], [5, 2, 1, "", "decode_segmentation_mask"], [5, 2, 1, "", "target_transform"]], "super_gradients.training.datasets.PascalVOCAndAUGUnifiedDataset": [[5, 3, 1, "", "cumulative_sizes"], [5, 3, 1, "", "datasets"]], "super_gradients.training.datasets.PascalVOCDetectionDataset": [[5, 2, 1, "", "download"]], "super_gradients.training.datasets.SegmentationDataSet": [[5, 2, 1, "", "sample_loader"], [5, 2, 1, "", "sample_transform"], [5, 2, 1, "", "target_loader"], [5, 2, 1, "", "target_transform"]], "super_gradients.training.datasets.SuperviselyPersonsDataset": [[5, 3, 1, "", "CLASS_LABELS"]], "super_gradients.training.kd_trainer": [[5, 1, 1, "", "KDTrainer"]], "super_gradients.training.kd_trainer.KDTrainer": [[5, 2, 1, "", "train"], [5, 2, 1, "", "train_from_config"]], "super_gradients.training.losses": [[5, 1, 1, "", "BCEDiceLoss"], [5, 1, 1, "", "DiceCEEdgeLoss"], [5, 1, 1, "", "FocalLoss"], [5, 1, 1, "", "KDLogitsLoss"], [5, 1, 1, "", "LabelSmoothingCrossEntropyLoss"], [5, 1, 1, "", "Losses"], [5, 1, 1, "", "RSquaredLoss"], [5, 1, 1, "", "SSDLoss"], [5, 1, 1, "", "ShelfNetOHEMLoss"], [5, 1, 1, "", "ShelfNetSemanticEncodingLoss"], [5, 1, 1, "", "YoloXDetectionLoss"], [5, 1, 1, "", "YoloXFastDetectionLoss"]], "super_gradients.training.losses.BCEDiceLoss": [[5, 2, 1, "", "forward"], [5, 3, 1, "", "loss_weights"], [5, 3, 1, "", "training"]], "super_gradients.training.losses.DiceCEEdgeLoss": [[5, 5, 1, "", "component_names"], [5, 2, 1, "", "forward"], [5, 3, 1, "", "reduction"]], "super_gradients.training.losses.FocalLoss": [[5, 2, 1, "", "forward"], [5, 3, 1, "", "reduction"]], "super_gradients.training.losses.KDLogitsLoss": [[5, 5, 1, "", "component_names"], [5, 2, 1, "", "forward"], [5, 3, 1, "", "reduction"]], "super_gradients.training.losses.LabelSmoothingCrossEntropyLoss": [[5, 2, 1, "", "forward"], [5, 3, 1, "", "ignore_index"], [5, 3, 1, "", "label_smoothing"]], "super_gradients.training.losses.Losses": [[5, 3, 1, "", "BCE_DICE_LOSS"], [5, 3, 1, "", "CROSS_ENTROPY"], [5, 3, 1, "", "DICE_CE_EDGE_LOSS"], [5, 3, 1, "", "KD_LOSS"], [5, 3, 1, "", "MSE"], [5, 3, 1, "", "R_SQUARED_LOSS"], [5, 3, 1, "", "SHELFNET_OHEM_LOSS"], [5, 3, 1, "", "SHELFNET_SE_LOSS"], [5, 3, 1, "", "SSD_LOSS"], [5, 3, 1, "", "STDC_LOSS"], [5, 3, 1, "", "YOLOX_FAST_LOSS"], [5, 3, 1, "", "YOLOX_LOSS"]], "super_gradients.training.losses.RSquaredLoss": [[5, 2, 1, "", "forward"], [5, 3, 1, "", "reduction"]], "super_gradients.training.losses.SSDLoss": [[5, 5, 1, "", "component_names"], [5, 2, 1, "", "forward"], [5, 2, 1, "", "match_dboxes"], [5, 3, 1, "", "reduction"]], "super_gradients.training.losses.ShelfNetOHEMLoss": [[5, 5, 1, "", "component_names"], [5, 2, 1, "", "forward"], [5, 3, 1, "", "reduction"]], "super_gradients.training.losses.ShelfNetSemanticEncodingLoss": [[5, 5, 1, "", "component_names"], [5, 2, 1, "", "forward"], [5, 3, 1, "", "ignore_index"], [5, 3, 1, "", "label_smoothing"]], "super_gradients.training.losses.YoloXDetectionLoss": [[5, 3, 1, "", "center_sampling_radius"], [5, 5, 1, "", "component_names"], [5, 2, 1, "", "dynamic_k_matching"], [5, 2, 1, "", "forward"], [5, 2, 1, "", "get_assignments"], [5, 2, 1, "", "get_in_boxes_info"], [5, 2, 1, "", "get_l1_target"], [5, 3, 1, "", "iou_type"], [5, 3, 1, "", "num_classes"], [5, 2, 1, "", "prepare_predictions"], [5, 3, 1, "", "reduction"], [5, 3, 1, "", "strides"], [5, 3, 1, "", "use_l1"]], "super_gradients.training.losses.YoloXFastDetectionLoss": [[5, 3, 1, "", "reduction"], [5, 3, 1, "", "training"]], "super_gradients.training.metrics": [[5, 1, 1, "", "Accuracy"], [5, 1, 1, "", "BinaryDice"], [5, 1, 1, "", "BinaryIOU"], [5, 1, 1, "", "DetectionMetrics"], [5, 1, 1, "", "DetectionMetrics_050"], [5, 1, 1, "", "DetectionMetrics_050_095"], [5, 1, 1, "", "DetectionMetrics_075"], [5, 1, 1, "", "Dice"], [5, 1, 1, "", "IoU"], [5, 1, 1, "", "Metrics"], [5, 1, 1, "", "PixelAccuracy"], [5, 1, 1, "", "PreprocessSegmentationMetricsArgs"], [5, 1, 1, "", "Top5"], [5, 1, 1, "", "ToyTestClassificationMetric"], [5, 4, 1, "", "accuracy"]], "super_gradients.training.metrics.Accuracy": [[5, 3, 1, "", "correct"], [5, 3, 1, "", "total"], [5, 2, 1, "", "update"]], "super_gradients.training.metrics.BinaryDice": [[5, 2, 1, "", "compute"], [5, 3, 1, "", "confmat"], [5, 3, 1, "", "training"]], "super_gradients.training.metrics.BinaryIOU": [[5, 2, 1, "", "compute"], [5, 3, 1, "", "confmat"], [5, 3, 1, "", "training"]], "super_gradients.training.metrics.DetectionMetrics": [[5, 2, 1, "", "compute"], [5, 3, 1, "", "dist_sync_on_step"], [5, 3, 1, "", "iou_thresholds"], [5, 3, 1, "", "normalize_targets"], [5, 3, 1, "", "num_cls"], [5, 3, 1, "", "post_prediction_callback"], [5, 3, 1, "", "recall_thresholds"], [5, 3, 1, "", "score_threshold"], [5, 3, 1, "", "top_k_predictions"], [5, 2, 1, "", "update"]], "super_gradients.training.metrics.Dice": [[5, 2, 1, "", "compute"], [5, 3, 1, "", "confmat"], [5, 2, 1, "", "update"]], "super_gradients.training.metrics.IoU": [[5, 3, 1, "", "confmat"], [5, 2, 1, "", "update"]], "super_gradients.training.metrics.Metrics": [[5, 3, 1, "", "ACCURACY"], [5, 3, 1, "", "BINARY_DICE"], [5, 3, 1, "", "BINARY_IOU"], [5, 3, 1, "", "DETECTION_METRICS"], [5, 3, 1, "", "DETECTION_METRICS_050"], [5, 3, 1, "", "DETECTION_METRICS_050_095"], [5, 3, 1, "", "DETECTION_METRICS_075"], [5, 3, 1, "", "DICE"], [5, 3, 1, "", "IOU"], [5, 3, 1, "", "PIXEL_ACCURACY"], [5, 3, 1, "", "TOP5"]], "super_gradients.training.metrics.PixelAccuracy": [[5, 2, 1, "", "compute"], [5, 2, 1, "", "update"]], "super_gradients.training.metrics.Top5": [[5, 2, 1, "", "compute"], [5, 2, 1, "", "update"]], "super_gradients.training.metrics.ToyTestClassificationMetric": [[5, 2, 1, "", "compute"], [5, 2, 1, "", "update"]], "super_gradients.training.sg_trainer": [[5, 1, 1, "", "MultiGPUMode"], [5, 1, 1, "", "StrictLoad"], [5, 1, 1, "", "Trainer"]], "super_gradients.training.sg_trainer.MultiGPUMode": [[5, 3, 1, "", "AUTO"], [5, 3, 1, "", "DATA_PARALLEL"], [5, 3, 1, "", "DISTRIBUTED_DATA_PARALLEL"], [5, 3, 1, "", "OFF"], [5, 2, 1, "", "dict"]], "super_gradients.training.sg_trainer.StrictLoad": [[5, 3, 1, "", "NO_KEY_MATCHING"], [5, 3, 1, "", "OFF"], [5, 3, 1, "", "ON"]], "super_gradients.training.sg_trainer.Trainer": [[5, 2, 1, "", "evaluate"], [5, 2, 1, "", "evaluate_checkpoint"], [5, 2, 1, "", "evaluate_from_recipe"], [5, 5, 1, "", "get_arch_params"], [5, 5, 1, "", "get_architecture"], [5, 5, 1, "", "get_module"], [5, 5, 1, "", "get_net"], [5, 5, 1, "", "get_structure"], [5, 2, 1, "", "predict"], [5, 2, 1, "", "resume_experiment"], [5, 2, 1, "", "set_ckpt_best_name"], [5, 2, 1, "", "set_ema"], [5, 2, 1, "", "set_experiment_name"], [5, 2, 1, "", "set_module"], [5, 2, 1, "", "set_net"], [5, 2, 1, "", "test"], [5, 2, 1, "id3", "train"], [5, 2, 1, "", "train_from_config"]], "super_gradients.training.training_hyperparams": [[5, 4, 1, "", "cifar10_resnet_train_params"], [5, 4, 1, "", "cityscapes_ddrnet_train_params"], [5, 4, 1, "", "cityscapes_regseg48_train_params"], [5, 4, 1, "", "cityscapes_stdc_base_train_params"], [5, 4, 1, "", "cityscapes_stdc_seg50_train_params"], [5, 4, 1, "", "cityscapes_stdc_seg75_train_params"], [5, 4, 1, "", "coco2017_ssd_lite_mobilenet_v2_train_params"], [5, 4, 1, "", "coco2017_yolox_train_params"], [5, 4, 1, "", "coco_segmentation_shelfnet_lw_train_params"], [5, 4, 1, "", "get"], [5, 4, 1, "", "imagenet_efficientnet_train_params"], [5, 4, 1, "", "imagenet_mobilenetv2_train_params"], [5, 4, 1, "", "imagenet_mobilenetv3_base_train_params"], [5, 4, 1, "", "imagenet_mobilenetv3_large_train_params"], [5, 4, 1, "", "imagenet_mobilenetv3_small_train_params"], [5, 4, 1, "", "imagenet_regnetY_train_params"], [5, 4, 1, "", "imagenet_repvgg_train_params"], [5, 4, 1, "", "imagenet_resnet50_kd_train_params"], [5, 4, 1, "", "imagenet_resnet50_train_params"], [5, 4, 1, "", "imagenet_vit_base_train_params"], [5, 4, 1, "", "imagenet_vit_large_train_params"]], "super_gradients.training.transforms": [[5, 1, 1, "", "DetectionHSV"], [5, 1, 1, "", "DetectionMosaic"], [5, 1, 1, "", "DetectionPaddedRescale"], [5, 1, 1, "", "DetectionRandomAffine"], [5, 1, 1, "", "DetectionTargetsFormatTransform"], [5, 1, 1, "", "Transforms"]], "super_gradients.training.transforms.DetectionMosaic": [[5, 2, 1, "", "close"], [5, 3, 1, "", "enable_mosaic"], [5, 3, 1, "", "input_dim"], [5, 3, 1, "", "prob"]], "super_gradients.training.transforms.DetectionPaddedRescale": [[5, 3, 1, "", "input_dim"], [5, 3, 1, "", "swap"]], "super_gradients.training.transforms.DetectionRandomAffine": [[5, 3, 1, "", "ar_thr"], [5, 3, 1, "", "area_thr"], [5, 2, 1, "", "close"], [5, 3, 1, "", "degrees"], [5, 3, 1, "", "enable"], [5, 3, 1, "", "filter_box_candidates"], [5, 3, 1, "", "scales"], [5, 3, 1, "", "shear"], [5, 3, 1, "", "target_size"], [5, 3, 1, "", "translate"], [5, 3, 1, "", "wh_thr"]], "super_gradients.training.transforms.DetectionTargetsFormatTransform": [[5, 3, 1, "", "max_targets"], [5, 3, 1, "", "min_bbox_edge_size"], [5, 3, 1, "", "output_format"]], "super_gradients.training.transforms.Transforms": [[5, 3, 1, "", "CenterCrop"], [5, 3, 1, "", "ColorJitter"], [5, 3, 1, "", "Compose"], [5, 3, 1, "", "ConvertImageDtype"], [5, 3, 1, "", "DetectionHSV"], [5, 3, 1, "", "DetectionHorizontalFlip"], [5, 3, 1, "", "DetectionMixup"], [5, 3, 1, "", "DetectionMosaic"], [5, 3, 1, "", "DetectionPaddedRescale"], [5, 3, 1, "", "DetectionRandomAffine"], [5, 3, 1, "", "DetectionTargetsFormat"], [5, 3, 1, "", "DetectionTargetsFormatTransform"], [5, 3, 1, "", "FiveCrop"], [5, 3, 1, "", "GaussianBlur"], [5, 3, 1, "", "Grayscale"], [5, 3, 1, "", "InterpolationMode"], [5, 3, 1, "", "Lambda"], [5, 3, 1, "", "Lighting"], [5, 3, 1, "", "LinearTransformation"], [5, 3, 1, "", "Normalize"], [5, 3, 1, "", "PILToTensor"], [5, 3, 1, "", "Pad"], [5, 3, 1, "", "RandAugmentTransform"], [5, 3, 1, "", "RandomAdjustSharpness"], [5, 3, 1, "", "RandomAffine"], [5, 3, 1, "", "RandomApply"], [5, 3, 1, "", "RandomAutocontrast"], [5, 3, 1, "", "RandomChoice"], [5, 3, 1, "", "RandomCrop"], [5, 3, 1, "", "RandomEqualize"], [5, 3, 1, "", "RandomErase"], [5, 3, 1, "", "RandomErasing"], [5, 3, 1, "", "RandomGrayscale"], [5, 3, 1, "", "RandomHorizontalFlip"], [5, 3, 1, "", "RandomInvert"], [5, 3, 1, "", "RandomOrder"], [5, 3, 1, "", "RandomPerspective"], [5, 3, 1, "", "RandomPosterize"], [5, 3, 1, "", "RandomResizedCrop"], [5, 3, 1, "", "RandomResizedCropAndInterpolation"], [5, 3, 1, "", "RandomRotation"], [5, 3, 1, "", "RandomSolarize"], [5, 3, 1, "", "RandomVerticalFlip"], [5, 3, 1, "", "Resize"], [5, 3, 1, "", "SegColorJitter"], [5, 3, 1, "", "SegCropImageAndMask"], [5, 3, 1, "", "SegPadShortToCropSize"], [5, 3, 1, "", "SegRandomFlip"], [5, 3, 1, "", "SegRandomGaussianBlur"], [5, 3, 1, "", "SegRandomRescale"], [5, 3, 1, "", "SegRandomRotate"], [5, 3, 1, "", "SegRescale"], [5, 3, 1, "", "SegResize"], [5, 3, 1, "", "TenCrop"], [5, 3, 1, "", "ToPILImage"], [5, 3, 1, "", "ToTensor"]], "super_gradients.training.utils": [[5, 1, 1, "", "HpmStruct"], [5, 1, 1, "", "Timer"], [5, 1, 1, "", "WrappedModel"], [5, 4, 1, "", "adapt_state_dict_to_fit_model_layer_names"], [5, 4, 1, "", "convert_to_tensor"], [5, 4, 1, "", "get_param"], [5, 4, 1, "", "raise_informative_runtime_error"], [5, 4, 1, "", "random_seed"], [5, 4, 1, "", "tensor_container_to_device"], [5, 4, 1, "", "torch_version_is_greater_or_equal"]], "super_gradients.training.utils.HpmStruct": [[5, 2, 1, "", "override"], [5, 2, 1, "", "set_schema"], [5, 2, 1, "", "to_dict"], [5, 2, 1, "", "validate"]], "super_gradients.training.utils.Timer": [[5, 2, 1, "", "start"], [5, 2, 1, "", "stop"]], "super_gradients.training.utils.WrappedModel": [[5, 2, 1, "", "forward"], [5, 3, 1, "", "training"]]}, "objtypes": {"0": "py:module", "1": "py:class", "2": "py:method", "3": "py:attribute", "4": "py:function", "5": "py:property"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "class", "Python class"], "2": ["py", "method", "Python method"], "3": ["py", "attribute", "Python attribute"], "4": ["py", "function", "Python function"], "5": ["py", "property", "Python property"]}, "titleterms": {"contribut": [0, 6], "guidelin": 0, "how": [0, 6], "jupyt": 0, "notebook": [0, 6], "code": 0, "style": 0, "document": [0, 2, 6], "welcom": 2, "supergradi": [2, 6], "": [2, 6], "To": 2, "technic": 2, "indic": 2, "tabl": [2, 6], "super_gradi": [3, 5], "packag": [3, 4, 5], "common": 4, "modul": [4, 5], "content": [4, 5, 6], "train": [5, 6], "dataset": [5, 6], "dataload": 5, "except": 5, "kd_trainer": 5, "legaci": 5, "losses_model": 5, "metric": 5, "model": [5, 6], "sg_model": 5, "training_hyperparam": 5, "transform": 5, "util": 5, "version": 6, "3": 6, "i": 6, "out": 6, "have": 6, "been": 6, "updat": 6, "build": 6, "support": 6, "variou": 6, "comput": 6, "vision": 6, "task": 6, "readi": 6, "deploi": 6, "pre": 6, "sota": 6, "classif": 6, "semant": 6, "segment": 6, "object": 6, "detect": 6, "easi": 6, "plug": 6, "plai": 6, "recip": 6, "product": 6, "quick": 6, "instal": 6, "what": 6, "new": 6, "come": 6, "soon": 6, "get": 6, "start": 6, "just": 6, "1": 6, "command": 6, "line": 6, "quickli": 6, "load": 6, "weight": 6, "your": 6, "desir": 6, "perform": 6, "transfer": 6, "learn": 6, "connect": 6, "custom": 6, "predict": 6, "us": 6, "advanc": 6, "featur": 6, "knowledg": 6, "distil": 6, "ddp": 6, "easili": 6, "chang": 6, "architectur": 6, "paramet": 6, "phase": 6, "callback": 6, "integr": 6, "bias": 6, "method": 6, "prerequisit": 6, "implement": 6, "imag": 6, "citat": 6, "commun": 6, "licens": 6, "deci": 6, "platform": 6}, "envversion": {"sphinx.domains.c": 2, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 8, "sphinx.domains.index": 1, "sphinx.domains.javascript": 2, "sphinx.domains.math": 2, "sphinx.domains.python": 3, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.todo": 2, "sphinx.ext.intersphinx": 1, "sphinx.ext.viewcode": 1, "sphinx": 57}, "alltitles": {"Contribution Guidelines": [[0, "contribution-guidelines"]], "How to Contribute": [[0, "how-to-contribute"]], "Jupyter Notebooks Contribution": [[0, "jupyter-notebooks-contribution"]], "Code Style Guidelines": [[0, "code-style-guidelines"]], "Documentation": [[0, "documentation"], [6, "documentation"]], "Welcome to SuperGradients\u2019s documentation!": [[2, "welcome-to-supergradients-s-documentation"]], "Welcome To SuperGradients": [[2, null]], "Technical Documentation": [[2, null]], "Indices and tables": [[2, "indices-and-tables"]], "super_gradients package": [[3, "super-gradients-package"]], "Common package": [[4, "common-package"]], "Module contents": [[4, "module-contents"], [5, "module-contents"]], "Training package": [[5, "training-package"]], "super_gradients.training module": [[5, "module-super_gradients.training"]], "super_gradients.training.datasets module": [[5, "super-gradients-training-datasets-module"]], "super_gradients.training.dataloaders module": [[5, "super-gradients-training-dataloaders-module"]], "super_gradients.training.exceptions module": [[5, "super-gradients-training-exceptions-module"]], "super_gradients.training.kd_trainer module": [[5, "super-gradients-training-kd-trainer-module"]], "super_gradients.training.legacy module": [[5, "module-super_gradients.training.legacy"]], "super_gradients.training.losses_models module": [[5, "module-super_gradients.training.losses"]], "super_gradients.training.metrics module": [[5, "module-super_gradients.training.metrics"]], "super_gradients.training.models module": [[5, "module-super_gradients.training.models"]], "super_gradients.training.sg_model module": [[5, "module-super_gradients.training.sg_trainer"]], "super_gradients.training.training_hyperparams module": [[5, "super-gradients-training-training-hyperparams-module"]], "super_gradients.training.transforms module": [[5, "super-gradients-training-transforms-module"]], "super_gradients.training.utils module": [[5, "module-super_gradients.training.utils"]], "Version 3 is out! Notebooks have been updated!": [[6, "version-3-is-out-notebooks-have-been-updated"]], "Build with SuperGradients": [[6, "build-with-supergradients"]], "Support various computer vision tasks": [[6, "support-various-computer-vision-tasks"]], "Ready to deploy pre-trained SOTA models": [[6, "ready-to-deploy-pre-trained-sota-models"]], "Classification": [[6, "classification"], [6, "id1"]], "Semantic Segmentation": [[6, "semantic-segmentation"], [6, "id2"], [6, "id8"]], "Object Detection": [[6, "object-detection"], [6, "id4"], [6, "id9"]], "Easy to train SOTA Models": [[6, "easy-to-train-sota-models"]], "Plug and play recipes": [[6, "plug-and-play-recipes"]], "Production readiness": [[6, "production-readiness"]], "Quick Installation": [[6, "quick-installation"], [6, "id7"]], "What\u2019s New": [[6, "what-s-new"]], "Coming soon": [[6, "coming-soon"]], "Table of Content": [[6, "table-of-content"]], "Getting Started": [[6, "getting-started"]], "Start Training with Just 1 Command Line": [[6, "start-training-with-just-1-command-line"]], "Quickly Load Pre-Trained Weights for Your Desired Model with SOTA Performance": [[6, "quickly-load-pre-trained-weights-for-your-desired-model-with-sota-performance"]], "Transfer Learning": [[6, "transfer-learning"], [6, "id3"], [6, "id5"]], "Quick Start": [[6, "quick-start"]], "How to Connect Custom Dataset": [[6, "how-to-connect-custom-dataset"], [6, "id6"]], "How to Predict Using Pre-trained Model": [[6, "how-to-predict-using-pre-trained-model"]], "Segmentation, Detection and Classification Prediction": [[6, "segmentation-detection-and-classification-prediction"]], "Advanced Features": [[6, "advanced-features"]], "Knowledge Distillation Training": [[6, "knowledge-distillation-training"]], "Recipes": [[6, "recipes"]], "Using DDP": [[6, "using-ddp"]], "Easily change architectures parameters": [[6, "easily-change-architectures-parameters"]], "Using phase callbacks": [[6, "using-phase-callbacks"]], "Integration to Weights and Biases": [[6, "integration-to-weights-and-biases"]], "Installation Methods": [[6, "installation-methods"]], "Prerequisites": [[6, "prerequisites"]], "Implemented Model Architectures": [[6, "implemented-model-architectures"]], "Image Classification": [[6, "image-classification"]], "Contributing": [[6, "contributing"]], "Citation": [[6, "citation"]], "Community": [[6, "community"]], "License": [[6, "license"]], "Deci Platform": [[6, "deci-platform"]]}, "indexentries": {"adnnmodelrepositorydatainterfaces (class in super_gradients.common)": [[4, "super_gradients.common.ADNNModelRepositoryDataInterfaces"]], "adnnmodelrepositorydatainterfaces (class in super_gradients.common.data_interface)": [[4, "super_gradients.common.data_interface.ADNNModelRepositoryDataInterfaces"]], "auto (super_gradients.common.multigpumode attribute)": [[4, "super_gradients.common.MultiGPUMode.AUTO"]], "auto (super_gradients.common.data_types.multigpumode attribute)": [[4, "super_gradients.common.data_types.MultiGPUMode.AUTO"]], "awsconnector (class in super_gradients.common)": [[4, "super_gradients.common.AWSConnector"]], "autologgerconfig (class in super_gradients.common)": [[4, "super_gradients.common.AutoLoggerConfig"]], "autologgerconfig (class in super_gradients.common.auto_logging)": [[4, "super_gradients.common.auto_logging.AutoLoggerConfig"]], "bicubic (super_gradients.common.upsamplemode attribute)": [[4, "super_gradients.common.UpsampleMode.BICUBIC"]], "bicubic (super_gradients.common.data_types.upsamplemode attribute)": [[4, "super_gradients.common.data_types.UpsampleMode.BICUBIC"]], "bilinear (super_gradients.common.upsamplemode attribute)": [[4, "super_gradients.common.UpsampleMode.BILINEAR"]], "bilinear (super_gradients.common.data_types.upsamplemode attribute)": [[4, "super_gradients.common.data_types.UpsampleMode.BILINEAR"]], "classification (super_gradients.common.deeplearningtask attribute)": [[4, "super_gradients.common.DeepLearningTask.CLASSIFICATION"]], "classification (super_gradients.common.data_types.deeplearningtask attribute)": [[4, "super_gradients.common.data_types.DeepLearningTask.CLASSIFICATION"]], "console_logging_level (super_gradients.common.autologgerconfig attribute)": [[4, "super_gradients.common.AutoLoggerConfig.CONSOLE_LOGGING_LEVEL"]], "console_logging_level (super_gradients.common.auto_logging.autologgerconfig attribute)": [[4, "super_gradients.common.auto_logging.AutoLoggerConfig.CONSOLE_LOGGING_LEVEL"]], "consolesink (class in super_gradients.common.auto_logging)": [[4, "super_gradients.common.auto_logging.ConsoleSink"]], "data_parallel (super_gradients.common.multigpumode attribute)": [[4, "super_gradients.common.MultiGPUMode.DATA_PARALLEL"]], "data_parallel (super_gradients.common.data_types.multigpumode attribute)": [[4, "super_gradients.common.data_types.MultiGPUMode.DATA_PARALLEL"]], "depth_estimation (super_gradients.common.deeplearningtask attribute)": [[4, "super_gradients.common.DeepLearningTask.DEPTH_ESTIMATION"]], "depth_estimation (super_gradients.common.data_types.deeplearningtask attribute)": [[4, "super_gradients.common.data_types.DeepLearningTask.DEPTH_ESTIMATION"]], "distributed_data_parallel (super_gradients.common.multigpumode attribute)": [[4, "super_gradients.common.MultiGPUMode.DISTRIBUTED_DATA_PARALLEL"]], "distributed_data_parallel (super_gradients.common.data_types.multigpumode attribute)": [[4, "super_gradients.common.data_types.MultiGPUMode.DISTRIBUTED_DATA_PARALLEL"]], "datasetdatainterface (class in super_gradients.common)": [[4, "super_gradients.common.DatasetDataInterface"]], "datasetdatainterface (class in super_gradients.common.data_interface)": [[4, "super_gradients.common.data_interface.DatasetDataInterface"]], "deeplearningtask (class in super_gradients.common)": [[4, "super_gradients.common.DeepLearningTask"]], "deeplearningtask (class in super_gradients.common.data_types)": [[4, "super_gradients.common.data_types.DeepLearningTask"]], "evaluationtype (class in super_gradients.common)": [[4, "super_gradients.common.EvaluationType"]], "evaluationtype (class in super_gradients.common.data_types)": [[4, "super_gradients.common.data_types.EvaluationType"]], "file_logging_level (super_gradients.common.autologgerconfig attribute)": [[4, "super_gradients.common.AutoLoggerConfig.FILE_LOGGING_LEVEL"]], "file_logging_level (super_gradients.common.auto_logging.autologgerconfig attribute)": [[4, "super_gradients.common.auto_logging.AutoLoggerConfig.FILE_LOGGING_LEVEL"]], "multigpumode (class in super_gradients.common)": [[4, "super_gradients.common.MultiGPUMode"]], "multigpumode (class in super_gradients.common.data_types)": [[4, "super_gradients.common.data_types.MultiGPUMode"]], "nearest (super_gradients.common.upsamplemode attribute)": [[4, "super_gradients.common.UpsampleMode.NEAREST"]], "nearest (super_gradients.common.data_types.upsamplemode attribute)": [[4, "super_gradients.common.data_types.UpsampleMode.NEAREST"]], "nlp (super_gradients.common.deeplearningtask attribute)": [[4, "super_gradients.common.DeepLearningTask.NLP"]], "nlp (super_gradients.common.data_types.deeplearningtask attribute)": [[4, "super_gradients.common.data_types.DeepLearningTask.NLP"]], "no_key_matching (super_gradients.common.strictload attribute)": [[4, "super_gradients.common.StrictLoad.NO_KEY_MATCHING"]], "no_key_matching (super_gradients.common.data_types.strictload attribute)": [[4, "super_gradients.common.data_types.StrictLoad.NO_KEY_MATCHING"]], "object_detection (super_gradients.common.deeplearningtask attribute)": [[4, "super_gradients.common.DeepLearningTask.OBJECT_DETECTION"]], "object_detection (super_gradients.common.data_types.deeplearningtask attribute)": [[4, "super_gradients.common.data_types.DeepLearningTask.OBJECT_DETECTION"]], "off (super_gradients.common.multigpumode attribute)": [[4, "super_gradients.common.MultiGPUMode.OFF"]], "off (super_gradients.common.strictload attribute)": [[4, "super_gradients.common.StrictLoad.OFF"]], "off (super_gradients.common.data_types.multigpumode attribute)": [[4, "super_gradients.common.data_types.MultiGPUMode.OFF"]], "off (super_gradients.common.data_types.strictload attribute)": [[4, "super_gradients.common.data_types.StrictLoad.OFF"]], "on (super_gradients.common.strictload attribute)": [[4, "super_gradients.common.StrictLoad.ON"]], "on (super_gradients.common.data_types.strictload attribute)": [[4, "super_gradients.common.data_types.StrictLoad.ON"]], "other (super_gradients.common.deeplearningtask attribute)": [[4, "super_gradients.common.DeepLearningTask.OTHER"]], "other (super_gradients.common.data_types.deeplearningtask attribute)": [[4, "super_gradients.common.data_types.DeepLearningTask.OTHER"]], "pose_estimation (super_gradients.common.deeplearningtask attribute)": [[4, "super_gradients.common.DeepLearningTask.POSE_ESTIMATION"]], "pose_estimation (super_gradients.common.data_types.deeplearningtask attribute)": [[4, "super_gradients.common.data_types.DeepLearningTask.POSE_ESTIMATION"]], "s3connector (class in super_gradients.common)": [[4, "super_gradients.common.S3Connector"]], "s3connector (class in super_gradients.common.data_connection)": [[4, "super_gradients.common.data_connection.S3Connector"]], "semantic_segmentation (super_gradients.common.deeplearningtask attribute)": [[4, "super_gradients.common.DeepLearningTask.SEMANTIC_SEGMENTATION"]], "semantic_segmentation (super_gradients.common.data_types.deeplearningtask attribute)": [[4, "super_gradients.common.data_types.DeepLearningTask.SEMANTIC_SEGMENTATION"]], "snpe_bilinear (super_gradients.common.upsamplemode attribute)": [[4, "super_gradients.common.UpsampleMode.SNPE_BILINEAR"]], "snpe_bilinear (super_gradients.common.data_types.upsamplemode attribute)": [[4, "super_gradients.common.data_types.UpsampleMode.SNPE_BILINEAR"]], "strictload (class in super_gradients.common)": [[4, "super_gradients.common.StrictLoad"]], "strictload (class in super_gradients.common.data_types)": [[4, "super_gradients.common.data_types.StrictLoad"]], "test (super_gradients.common.evaluationtype attribute)": [[4, "super_gradients.common.EvaluationType.TEST"]], "test (super_gradients.common.data_types.evaluationtype attribute)": [[4, "super_gradients.common.data_types.EvaluationType.TEST"]], "upsamplemode (class in super_gradients.common)": [[4, "super_gradients.common.UpsampleMode"]], "upsamplemode (class in super_gradients.common.data_types)": [[4, "super_gradients.common.data_types.UpsampleMode"]], "validation (super_gradients.common.evaluationtype attribute)": [[4, "super_gradients.common.EvaluationType.VALIDATION"]], "validation (super_gradients.common.data_types.evaluationtype attribute)": [[4, "super_gradients.common.data_types.EvaluationType.VALIDATION"]], "check_key_exists() (super_gradients.common.s3connector method)": [[4, "super_gradients.common.S3Connector.check_key_exists"]], "check_key_exists() (super_gradients.common.data_connection.s3connector method)": [[4, "super_gradients.common.data_connection.S3Connector.check_key_exists"]], "convert_content_length_to_mb() (super_gradients.common.s3connector static method)": [[4, "super_gradients.common.S3Connector.convert_content_length_to_mb"]], "convert_content_length_to_mb() (super_gradients.common.data_connection.s3connector static method)": [[4, "super_gradients.common.data_connection.S3Connector.convert_content_length_to_mb"]], "copy_key() (super_gradients.common.s3connector method)": [[4, "super_gradients.common.S3Connector.copy_key"]], "copy_key() (super_gradients.common.data_connection.s3connector method)": [[4, "super_gradients.common.data_connection.S3Connector.copy_key"]], "create_bucket() (super_gradients.common.s3connector method)": [[4, "super_gradients.common.S3Connector.create_bucket"]], "create_bucket() (super_gradients.common.data_connection.s3connector method)": [[4, "super_gradients.common.data_connection.S3Connector.create_bucket"]], "create_presigned_download_url() (super_gradients.common.s3connector method)": [[4, "super_gradients.common.S3Connector.create_presigned_download_url"]], "create_presigned_download_url() (super_gradients.common.data_connection.s3connector method)": [[4, "super_gradients.common.data_connection.S3Connector.create_presigned_download_url"]], "create_presigned_upload_url() (super_gradients.common.s3connector method)": [[4, "super_gradients.common.S3Connector.create_presigned_upload_url"]], "create_presigned_upload_url() (super_gradients.common.data_connection.s3connector method)": [[4, "super_gradients.common.data_connection.S3Connector.create_presigned_upload_url"]], "delete_bucket() (super_gradients.common.s3connector method)": [[4, "super_gradients.common.S3Connector.delete_bucket"]], "delete_bucket() (super_gradients.common.data_connection.s3connector method)": [[4, "super_gradients.common.data_connection.S3Connector.delete_bucket"]], "delete_key() (super_gradients.common.s3connector method)": [[4, "super_gradients.common.S3Connector.delete_key"]], "delete_key() (super_gradients.common.data_connection.s3connector method)": [[4, "super_gradients.common.data_connection.S3Connector.delete_key"]], "dict() (super_gradients.common.multigpumode class method)": [[4, "super_gradients.common.MultiGPUMode.dict"]], "dict() (super_gradients.common.data_types.multigpumode class method)": [[4, "super_gradients.common.data_types.MultiGPUMode.dict"]], "download_file_by_path() (super_gradients.common.s3connector method)": [[4, "super_gradients.common.S3Connector.download_file_by_path"]], "download_file_by_path() (super_gradients.common.data_connection.s3connector method)": [[4, "super_gradients.common.data_connection.S3Connector.download_file_by_path"]], "download_key() (super_gradients.common.s3connector method)": [[4, "super_gradients.common.S3Connector.download_key"]], "download_key() (super_gradients.common.data_connection.s3connector method)": [[4, "super_gradients.common.data_connection.S3Connector.download_key"]], "download_keys_by_prefix() (super_gradients.common.s3connector method)": [[4, "super_gradients.common.S3Connector.download_keys_by_prefix"]], "download_keys_by_prefix() (super_gradients.common.data_connection.s3connector method)": [[4, "super_gradients.common.data_connection.S3Connector.download_keys_by_prefix"]], "empty_folder_content_by_path_prefix() (super_gradients.common.s3connector method)": [[4, "super_gradients.common.S3Connector.empty_folder_content_by_path_prefix"]], "empty_folder_content_by_path_prefix() (super_gradients.common.data_connection.s3connector method)": [[4, "super_gradients.common.data_connection.S3Connector.empty_folder_content_by_path_prefix"]], "explicit_params_validation() (in module super_gradients.common)": [[4, "super_gradients.common.explicit_params_validation"]], "explicit_params_validation() (in module super_gradients.common.decorators)": [[4, "super_gradients.common.decorators.explicit_params_validation"]], "filename (super_gradients.common.autologgerconfig attribute)": [[4, "super_gradients.common.AutoLoggerConfig.filename"]], "filename (super_gradients.common.auto_logging.autologgerconfig attribute)": [[4, "super_gradients.common.auto_logging.AutoLoggerConfig.filename"]], "flush() (super_gradients.common.auto_logging.consolesink static method)": [[4, "super_gradients.common.auto_logging.ConsoleSink.flush"]], "get_aws_client_for_service_name() (super_gradients.common.awsconnector static method)": [[4, "super_gradients.common.AWSConnector.get_aws_client_for_service_name"]], "get_aws_resource_for_service_name() (super_gradients.common.awsconnector static method)": [[4, "super_gradients.common.AWSConnector.get_aws_resource_for_service_name"]], "get_aws_session() (super_gradients.common.awsconnector static method)": [[4, "super_gradients.common.AWSConnector.get_aws_session"]], "get_filename() (super_gradients.common.auto_logging.consolesink static method)": [[4, "super_gradients.common.auto_logging.ConsoleSink.get_filename"]], "get_instance() (super_gradients.common.autologgerconfig class method)": [[4, "super_gradients.common.AutoLoggerConfig.get_instance"]], "get_instance() (super_gradients.common.auto_logging.autologgerconfig class method)": [[4, "super_gradients.common.auto_logging.AutoLoggerConfig.get_instance"]], "get_log_file_path() (super_gradients.common.autologgerconfig class method)": [[4, "super_gradients.common.AutoLoggerConfig.get_log_file_path"]], "get_log_file_path() (super_gradients.common.auto_logging.autologgerconfig class method)": [[4, "super_gradients.common.auto_logging.AutoLoggerConfig.get_log_file_path"]], "get_object_by_etag() (super_gradients.common.s3connector method)": [[4, "super_gradients.common.S3Connector.get_object_by_etag"]], "get_object_by_etag() (super_gradients.common.data_connection.s3connector method)": [[4, "super_gradients.common.data_connection.S3Connector.get_object_by_etag"]], "get_object_metadata() (super_gradients.common.s3connector method)": [[4, "super_gradients.common.S3Connector.get_object_metadata"]], "get_object_metadata() (super_gradients.common.data_connection.s3connector method)": [[4, "super_gradients.common.data_connection.S3Connector.get_object_metadata"]], "init_trainer() (in module super_gradients.common)": [[4, "super_gradients.common.init_trainer"]], "init_trainer() (in module super_gradients.common.environment)": [[4, "super_gradients.common.environment.init_trainer"]], "is_client_error() (super_gradients.common.awsconnector static method)": [[4, "super_gradients.common.AWSConnector.is_client_error"]], "is_distributed() (in module super_gradients.common)": [[4, "super_gradients.common.is_distributed"]], "is_distributed() (in module super_gradients.common.environment)": [[4, "super_gradients.common.environment.is_distributed"]], "list_bucket_objects() (super_gradients.common.s3connector method)": [[4, "super_gradients.common.S3Connector.list_bucket_objects"]], "list_bucket_objects() (super_gradients.common.data_connection.s3connector method)": [[4, "super_gradients.common.data_connection.S3Connector.list_bucket_objects"]], "load_all_remote_log_files() (super_gradients.common.adnnmodelrepositorydatainterfaces method)": [[4, "super_gradients.common.ADNNModelRepositoryDataInterfaces.load_all_remote_log_files"]], "load_all_remote_log_files() (super_gradients.common.data_interface.adnnmodelrepositorydatainterfaces method)": [[4, "super_gradients.common.data_interface.ADNNModelRepositoryDataInterfaces.load_all_remote_log_files"]], "load_remote_checkpoints_file() (super_gradients.common.adnnmodelrepositorydatainterfaces method)": [[4, "super_gradients.common.ADNNModelRepositoryDataInterfaces.load_remote_checkpoints_file"]], "load_remote_checkpoints_file() (super_gradients.common.data_interface.adnnmodelrepositorydatainterfaces method)": [[4, "super_gradients.common.data_interface.ADNNModelRepositoryDataInterfaces.load_remote_checkpoints_file"]], "load_remote_dataset_file() (super_gradients.common.datasetdatainterface method)": [[4, "super_gradients.common.DatasetDataInterface.load_remote_dataset_file"]], "load_remote_dataset_file() (super_gradients.common.data_interface.datasetdatainterface method)": [[4, "super_gradients.common.data_interface.DatasetDataInterface.load_remote_dataset_file"]], "load_remote_logging_files() (super_gradients.common.adnnmodelrepositorydatainterfaces method)": [[4, "super_gradients.common.ADNNModelRepositoryDataInterfaces.load_remote_logging_files"]], "load_remote_logging_files() (super_gradients.common.data_interface.adnnmodelrepositorydatainterfaces method)": [[4, "super_gradients.common.data_interface.ADNNModelRepositoryDataInterfaces.load_remote_logging_files"]], "module": [[4, "module-super_gradients.common"], [4, "module-super_gradients.common.auto_logging"], [4, "module-super_gradients.common.data_connection"], [4, "module-super_gradients.common.data_interface"], [4, "module-super_gradients.common.data_types"], [4, "module-super_gradients.common.decorators"], [4, "module-super_gradients.common.environment"], [4, "module-super_gradients.common.factories"], [4, "module-super_gradients.common.plugins"], [4, "module-super_gradients.common.registry"], [4, "module-super_gradients.common.sg_loggers"], [5, "module-super_gradients.training"], [5, "module-super_gradients.training.dataloaders"], [5, "module-super_gradients.training.datasets"], [5, "module-super_gradients.training.exceptions"], [5, "module-super_gradients.training.kd_trainer"], [5, "module-super_gradients.training.legacy"], [5, "module-super_gradients.training.losses"], [5, "module-super_gradients.training.metrics"], [5, "module-super_gradients.training.models"], [5, "module-super_gradients.training.sg_trainer"], [5, "module-super_gradients.training.training_hyperparams"], [5, "module-super_gradients.training.transforms"], [5, "module-super_gradients.training.utils"]], "register_detection_module() (in module super_gradients.common.registry)": [[4, "super_gradients.common.registry.register_detection_module"]], "register_loss() (in module super_gradients.common.registry)": [[4, "super_gradients.common.registry.register_loss"]], "register_metric() (in module super_gradients.common.registry)": [[4, "super_gradients.common.registry.register_metric"]], "register_model() (in module super_gradients.common.registry)": [[4, "super_gradients.common.registry.register_model"]], "save_all_remote_checkpoint_files() (super_gradients.common.adnnmodelrepositorydatainterfaces method)": [[4, "super_gradients.common.ADNNModelRepositoryDataInterfaces.save_all_remote_checkpoint_files"]], "save_all_remote_checkpoint_files() (super_gradients.common.data_interface.adnnmodelrepositorydatainterfaces method)": [[4, "super_gradients.common.data_interface.ADNNModelRepositoryDataInterfaces.save_all_remote_checkpoint_files"]], "save_remote_checkpoints_file() (super_gradients.common.adnnmodelrepositorydatainterfaces method)": [[4, "super_gradients.common.ADNNModelRepositoryDataInterfaces.save_remote_checkpoints_file"]], "save_remote_checkpoints_file() (super_gradients.common.data_interface.adnnmodelrepositorydatainterfaces method)": [[4, "super_gradients.common.data_interface.ADNNModelRepositoryDataInterfaces.save_remote_checkpoints_file"]], "save_remote_tensorboard_event_files() (super_gradients.common.adnnmodelrepositorydatainterfaces method)": [[4, "super_gradients.common.ADNNModelRepositoryDataInterfaces.save_remote_tensorboard_event_files"]], "save_remote_tensorboard_event_files() (super_gradients.common.data_interface.adnnmodelrepositorydatainterfaces method)": [[4, "super_gradients.common.data_interface.ADNNModelRepositoryDataInterfaces.save_remote_tensorboard_event_files"]], "set_location() (super_gradients.common.auto_logging.consolesink static method)": [[4, "super_gradients.common.auto_logging.ConsoleSink.set_location"]], "setup_crash_handler() (in module super_gradients.common)": [[4, "super_gradients.common.setup_crash_handler"]], "setup_logging() (super_gradients.common.autologgerconfig class method)": [[4, "super_gradients.common.AutoLoggerConfig.setup_logging"]], "setup_logging() (super_gradients.common.auto_logging.autologgerconfig class method)": [[4, "super_gradients.common.auto_logging.AutoLoggerConfig.setup_logging"]], "singleton() (in module super_gradients.common)": [[4, "super_gradients.common.singleton"]], "singleton() (in module super_gradients.common.decorators)": [[4, "super_gradients.common.decorators.singleton"]], "super_gradients.common": [[4, "module-super_gradients.common"]], "super_gradients.common.auto_logging": [[4, "module-super_gradients.common.auto_logging"]], "super_gradients.common.data_connection": [[4, "module-super_gradients.common.data_connection"]], "super_gradients.common.data_interface": [[4, "module-super_gradients.common.data_interface"]], "super_gradients.common.data_types": [[4, "module-super_gradients.common.data_types"]], "super_gradients.common.decorators": [[4, "module-super_gradients.common.decorators"]], "super_gradients.common.environment": [[4, "module-super_gradients.common.environment"]], "super_gradients.common.factories": [[4, "module-super_gradients.common.factories"]], "super_gradients.common.plugins": [[4, "module-super_gradients.common.plugins"]], "super_gradients.common.registry": [[4, "module-super_gradients.common.registry"]], "super_gradients.common.sg_loggers": [[4, "module-super_gradients.common.sg_loggers"]], "upload_buffer() (super_gradients.common.s3connector method)": [[4, "super_gradients.common.S3Connector.upload_buffer"]], "upload_buffer() (super_gradients.common.data_connection.s3connector method)": [[4, "super_gradients.common.data_connection.S3Connector.upload_buffer"]], "upload_file() (super_gradients.common.s3connector method)": [[4, "super_gradients.common.S3Connector.upload_file"]], "upload_file() (super_gradients.common.data_connection.s3connector method)": [[4, "super_gradients.common.data_connection.S3Connector.upload_file"]], "upload_file_from_stream() (super_gradients.common.s3connector method)": [[4, "super_gradients.common.S3Connector.upload_file_from_stream"]], "upload_file_from_stream() (super_gradients.common.data_connection.s3connector method)": [[4, "super_gradients.common.data_connection.S3Connector.upload_file_from_stream"]], "accuracy (super_gradients.training.metrics.metrics attribute)": [[5, "super_gradients.training.metrics.Metrics.ACCURACY"]], "auto (super_gradients.training.multigpumode attribute)": [[5, "super_gradients.training.MultiGPUMode.AUTO"]], "auto (super_gradients.training.sg_trainer.multigpumode attribute)": [[5, "super_gradients.training.sg_trainer.MultiGPUMode.AUTO"]], "accuracy (class in super_gradients.training.metrics)": [[5, "super_gradients.training.metrics.Accuracy"]], "bcediceloss (class in super_gradients.training.losses)": [[5, "super_gradients.training.losses.BCEDiceLoss"]], "bce_dice_loss (super_gradients.training.losses.losses attribute)": [[5, "super_gradients.training.losses.Losses.BCE_DICE_LOSS"]], "binary_dice (super_gradients.training.metrics.metrics attribute)": [[5, "super_gradients.training.metrics.Metrics.BINARY_DICE"]], "binary_iou (super_gradients.training.metrics.metrics attribute)": [[5, "super_gradients.training.metrics.Metrics.BINARY_IOU"]], "binarydice (class in super_gradients.training.metrics)": [[5, "super_gradients.training.metrics.BinaryDice"]], "binaryiou (class in super_gradients.training.metrics)": [[5, "super_gradients.training.metrics.BinaryIOU"]], "class_labels (super_gradients.training.datasets.superviselypersonsdataset attribute)": [[5, "super_gradients.training.datasets.SuperviselyPersonsDataset.CLASS_LABELS"]], "cocodetectiondataset (class in super_gradients.training.datasets)": [[5, "super_gradients.training.datasets.COCODetectionDataset"]], "cross_entropy (super_gradients.training.losses.losses attribute)": [[5, "super_gradients.training.losses.Losses.CROSS_ENTROPY"]], "centercrop (super_gradients.training.transforms.transforms attribute)": [[5, "super_gradients.training.transforms.Transforms.CenterCrop"]], "cifar10 (class in super_gradients.training.datasets)": [[5, "super_gradients.training.datasets.Cifar10"]], "cifar100 (class in super_gradients.training.datasets)": [[5, "super_gradients.training.datasets.Cifar100"]], "cocosegmentationdataset (class in super_gradients.training.datasets)": [[5, "super_gradients.training.datasets.CoCoSegmentationDataSet"]], "colorjitter (super_gradients.training.transforms.transforms attribute)": [[5, "super_gradients.training.transforms.Transforms.ColorJitter"]], "compose (super_gradients.training.transforms.transforms attribute)": [[5, "super_gradients.training.transforms.Transforms.Compose"]], "convertimagedtype (super_gradients.training.transforms.transforms attribute)": [[5, "super_gradients.training.transforms.Transforms.ConvertImageDtype"]], "data_parallel (super_gradients.training.multigpumode attribute)": [[5, "super_gradients.training.MultiGPUMode.DATA_PARALLEL"]], "data_parallel (super_gradients.training.sg_trainer.multigpumode attribute)": [[5, "super_gradients.training.sg_trainer.MultiGPUMode.DATA_PARALLEL"]], "detection_metrics (super_gradients.training.metrics.metrics attribute)": [[5, "super_gradients.training.metrics.Metrics.DETECTION_METRICS"]], "detection_metrics_050 (super_gradients.training.metrics.metrics attribute)": [[5, "super_gradients.training.metrics.Metrics.DETECTION_METRICS_050"]], "detection_metrics_050_095 (super_gradients.training.metrics.metrics attribute)": [[5, "super_gradients.training.metrics.Metrics.DETECTION_METRICS_050_095"]], "detection_metrics_075 (super_gradients.training.metrics.metrics attribute)": [[5, "super_gradients.training.metrics.Metrics.DETECTION_METRICS_075"]], "dice (super_gradients.training.metrics.metrics attribute)": [[5, "super_gradients.training.metrics.Metrics.DICE"]], "dice_ce_edge_loss (super_gradients.training.losses.losses attribute)": [[5, "super_gradients.training.losses.Losses.DICE_CE_EDGE_LOSS"]], "distributed_data_parallel (super_gradients.training.multigpumode attribute)": [[5, "super_gradients.training.MultiGPUMode.DISTRIBUTED_DATA_PARALLEL"]], "distributed_data_parallel (super_gradients.training.sg_trainer.multigpumode attribute)": [[5, "super_gradients.training.sg_trainer.MultiGPUMode.DISTRIBUTED_DATA_PARALLEL"]], "dataaugmentation (class in super_gradients.training)": [[5, "super_gradients.training.DataAugmentation"]], "dataaugmentation (class in super_gradients.training.datasets)": [[5, "super_gradients.training.datasets.DataAugmentation"]], "detectiondataset (class in super_gradients.training.datasets)": [[5, "super_gradients.training.datasets.DetectionDataset"]], "detectionhsv (class in super_gradients.training.transforms)": [[5, "super_gradients.training.transforms.DetectionHSV"]], "detectionhsv (super_gradients.training.transforms.transforms attribute)": [[5, "super_gradients.training.transforms.Transforms.DetectionHSV"]], "detectionhorizontalflip (super_gradients.training.transforms.transforms attribute)": [[5, "super_gradients.training.transforms.Transforms.DetectionHorizontalFlip"]], "detectionmetrics (class in super_gradients.training.metrics)": [[5, "super_gradients.training.metrics.DetectionMetrics"]], "detectionmetrics_050 (class in super_gradients.training.metrics)": [[5, "super_gradients.training.metrics.DetectionMetrics_050"]], "detectionmetrics_050_095 (class in super_gradients.training.metrics)": [[5, "super_gradients.training.metrics.DetectionMetrics_050_095"]], "detectionmetrics_075 (class in super_gradients.training.metrics)": [[5, "super_gradients.training.metrics.DetectionMetrics_075"]], "detectionmixup (super_gradients.training.transforms.transforms attribute)": [[5, "super_gradients.training.transforms.Transforms.DetectionMixup"]], "detectionmosaic (class in super_gradients.training.transforms)": [[5, "super_gradients.training.transforms.DetectionMosaic"]], "detectionmosaic (super_gradients.training.transforms.transforms attribute)": [[5, "super_gradients.training.transforms.Transforms.DetectionMosaic"]], "detectionpaddedrescale (class in super_gradients.training.transforms)": [[5, "super_gradients.training.transforms.DetectionPaddedRescale"]], "detectionpaddedrescale (super_gradients.training.transforms.transforms attribute)": [[5, "super_gradients.training.transforms.Transforms.DetectionPaddedRescale"]], "detectionrandomaffine (class in super_gradients.training.transforms)": [[5, "super_gradients.training.transforms.DetectionRandomAffine"]], "detectionrandomaffine (super_gradients.training.transforms.transforms attribute)": [[5, "super_gradients.training.transforms.Transforms.DetectionRandomAffine"]], "detectiontargetsformat (super_gradients.training.transforms.transforms attribute)": [[5, "super_gradients.training.transforms.Transforms.DetectionTargetsFormat"]], "detectiontargetsformattransform (class in super_gradients.training.transforms)": [[5, "super_gradients.training.transforms.DetectionTargetsFormatTransform"]], "detectiontargetsformattransform (super_gradients.training.transforms.transforms attribute)": [[5, "super_gradients.training.transforms.Transforms.DetectionTargetsFormatTransform"]], "dice (class in super_gradients.training.metrics)": [[5, "super_gradients.training.metrics.Dice"]], "diceceedgeloss (class in super_gradients.training.losses)": [[5, "super_gradients.training.losses.DiceCEEdgeLoss"]], "directorydataset (class in super_gradients.training.datasets)": [[5, "super_gradients.training.datasets.DirectoryDataSet"]], "evaluationtype (class in super_gradients.training)": [[5, "super_gradients.training.EvaluationType"]], "fivecrop (super_gradients.training.transforms.transforms attribute)": [[5, "super_gradients.training.transforms.Transforms.FiveCrop"]], "focalloss (class in super_gradients.training.losses)": [[5, "super_gradients.training.losses.FocalLoss"]], "gaussianblur (super_gradients.training.transforms.transforms attribute)": [[5, "super_gradients.training.transforms.Transforms.GaussianBlur"]], "grayscale (super_gradients.training.transforms.transforms attribute)": [[5, "super_gradients.training.transforms.Transforms.Grayscale"]], "hpmstruct (class in super_gradients.training.utils)": [[5, "super_gradients.training.utils.HpmStruct"]], "ignore_label (super_gradients.training.datasets.pascalvoc2012segmentationdataset attribute)": [[5, "super_gradients.training.datasets.PascalVOC2012SegmentationDataSet.IGNORE_LABEL"]], "iou (super_gradients.training.metrics.metrics attribute)": [[5, "super_gradients.training.metrics.Metrics.IOU"]], "imagenetdataset (class in super_gradients.training.datasets)": [[5, "super_gradients.training.datasets.ImageNetDataset"]], "interpolationmode (super_gradients.training.transforms.transforms attribute)": [[5, "super_gradients.training.transforms.Transforms.InterpolationMode"]], "iou (class in super_gradients.training.metrics)": [[5, "super_gradients.training.metrics.IoU"]], "kdlogitsloss (class in super_gradients.training.losses)": [[5, "super_gradients.training.losses.KDLogitsLoss"]], "kdtrainer (class in super_gradients.training)": [[5, "super_gradients.training.KDTrainer"]], "kdtrainer (class in super_gradients.training.kd_trainer)": [[5, "super_gradients.training.kd_trainer.KDTrainer"]], "kd_loss (super_gradients.training.losses.losses attribute)": [[5, "super_gradients.training.losses.Losses.KD_LOSS"]], "labelsmoothingcrossentropyloss (class in super_gradients.training.losses)": [[5, "super_gradients.training.losses.LabelSmoothingCrossEntropyLoss"]], "lambda (super_gradients.training.transforms.transforms attribute)": [[5, "super_gradients.training.transforms.Transforms.Lambda"]], "lighting (super_gradients.training.transforms.transforms attribute)": [[5, "super_gradients.training.transforms.Transforms.Lighting"]], "lineartransformation (super_gradients.training.transforms.transforms attribute)": [[5, "super_gradients.training.transforms.Transforms.LinearTransformation"]], "listdataset (class in super_gradients.training.datasets)": [[5, "super_gradients.training.datasets.ListDataset"]], "losses (class in super_gradients.training.losses)": [[5, "super_gradients.training.losses.Losses"]], "mse (super_gradients.training.losses.losses attribute)": [[5, "super_gradients.training.losses.Losses.MSE"]], "metrics (class in super_gradients.training.metrics)": [[5, "super_gradients.training.metrics.Metrics"]], "multigpumode (class in super_gradients.training)": [[5, "super_gradients.training.MultiGPUMode"]], "multigpumode (class in super_gradients.training.sg_trainer)": [[5, "super_gradients.training.sg_trainer.MultiGPUMode"]], "no_key_matching (super_gradients.training.strictload attribute)": [[5, "super_gradients.training.StrictLoad.NO_KEY_MATCHING"]], "no_key_matching (super_gradients.training.sg_trainer.strictload attribute)": [[5, "super_gradients.training.sg_trainer.StrictLoad.NO_KEY_MATCHING"]], "normalize (super_gradients.training.transforms.transforms attribute)": [[5, "super_gradients.training.transforms.Transforms.Normalize"]], "off (super_gradients.training.multigpumode attribute)": [[5, "super_gradients.training.MultiGPUMode.OFF"]], "off (super_gradients.training.strictload attribute)": [[5, "super_gradients.training.StrictLoad.OFF"]], "off (super_gradients.training.sg_trainer.multigpumode attribute)": [[5, "super_gradients.training.sg_trainer.MultiGPUMode.OFF"]], "off (super_gradients.training.sg_trainer.strictload attribute)": [[5, "super_gradients.training.sg_trainer.StrictLoad.OFF"]], "on (super_gradients.training.strictload attribute)": [[5, "super_gradients.training.StrictLoad.ON"]], "on (super_gradients.training.sg_trainer.strictload attribute)": [[5, "super_gradients.training.sg_trainer.StrictLoad.ON"]], "piltotensor (super_gradients.training.transforms.transforms attribute)": [[5, "super_gradients.training.transforms.Transforms.PILToTensor"]], "pixel_accuracy (super_gradients.training.metrics.metrics attribute)": [[5, "super_gradients.training.metrics.Metrics.PIXEL_ACCURACY"]], "pad (super_gradients.training.transforms.transforms attribute)": [[5, "super_gradients.training.transforms.Transforms.Pad"]], "pascalaug2012segmentationdataset (class in super_gradients.training.datasets)": [[5, "super_gradients.training.datasets.PascalAUG2012SegmentationDataSet"]], "pascalvoc2012segmentationdataset (class in super_gradients.training.datasets)": [[5, "super_gradients.training.datasets.PascalVOC2012SegmentationDataSet"]], "pascalvocandaugunifieddataset (class in super_gradients.training.datasets)": [[5, "super_gradients.training.datasets.PascalVOCAndAUGUnifiedDataset"]], "pascalvocdetectiondataset (class in super_gradients.training.datasets)": [[5, "super_gradients.training.datasets.PascalVOCDetectionDataset"]], "pixelaccuracy (class in super_gradients.training.metrics)": [[5, "super_gradients.training.metrics.PixelAccuracy"]], "preprocesssegmentationmetricsargs (class in super_gradients.training.metrics)": [[5, "super_gradients.training.metrics.PreprocessSegmentationMetricsArgs"]], "rsquaredloss (class in super_gradients.training.losses)": [[5, "super_gradients.training.losses.RSquaredLoss"]], "r_squared_loss (super_gradients.training.losses.losses attribute)": [[5, "super_gradients.training.losses.Losses.R_SQUARED_LOSS"]], "randaugmenttransform (super_gradients.training.transforms.transforms attribute)": [[5, "super_gradients.training.transforms.Transforms.RandAugmentTransform"]], "randomadjustsharpness (super_gradients.training.transforms.transforms attribute)": [[5, "super_gradients.training.transforms.Transforms.RandomAdjustSharpness"]], "randomaffine (super_gradients.training.transforms.transforms attribute)": [[5, "super_gradients.training.transforms.Transforms.RandomAffine"]], "randomapply (super_gradients.training.transforms.transforms attribute)": [[5, "super_gradients.training.transforms.Transforms.RandomApply"]], "randomautocontrast (super_gradients.training.transforms.transforms attribute)": [[5, "super_gradients.training.transforms.Transforms.RandomAutocontrast"]], "randomchoice (super_gradients.training.transforms.transforms attribute)": [[5, "super_gradients.training.transforms.Transforms.RandomChoice"]], "randomcrop (super_gradients.training.transforms.transforms attribute)": [[5, "super_gradients.training.transforms.Transforms.RandomCrop"]], "randomequalize (super_gradients.training.transforms.transforms attribute)": [[5, "super_gradients.training.transforms.Transforms.RandomEqualize"]], "randomerase (super_gradients.training.transforms.transforms attribute)": [[5, "super_gradients.training.transforms.Transforms.RandomErase"]], "randomerasing (super_gradients.training.transforms.transforms attribute)": [[5, "super_gradients.training.transforms.Transforms.RandomErasing"]], "randomgrayscale (super_gradients.training.transforms.transforms attribute)": [[5, "super_gradients.training.transforms.Transforms.RandomGrayscale"]], "randomhorizontalflip (super_gradients.training.transforms.transforms attribute)": [[5, "super_gradients.training.transforms.Transforms.RandomHorizontalFlip"]], "randominvert (super_gradients.training.transforms.transforms attribute)": [[5, "super_gradients.training.transforms.Transforms.RandomInvert"]], "randomorder (super_gradients.training.transforms.transforms attribute)": [[5, "super_gradients.training.transforms.Transforms.RandomOrder"]], "randomperspective (super_gradients.training.transforms.transforms attribute)": [[5, "super_gradients.training.transforms.Transforms.RandomPerspective"]], "randomposterize (super_gradients.training.transforms.transforms attribute)": [[5, "super_gradients.training.transforms.Transforms.RandomPosterize"]], "randomresizedcrop (super_gradients.training.transforms.transforms attribute)": [[5, "super_gradients.training.transforms.Transforms.RandomResizedCrop"]], "randomresizedcropandinterpolation (super_gradients.training.transforms.transforms attribute)": [[5, "super_gradients.training.transforms.Transforms.RandomResizedCropAndInterpolation"]], "randomrotation (super_gradients.training.transforms.transforms attribute)": [[5, "super_gradients.training.transforms.Transforms.RandomRotation"]], "randomsolarize (super_gradients.training.transforms.transforms attribute)": [[5, "super_gradients.training.transforms.Transforms.RandomSolarize"]], "randomverticalflip (super_gradients.training.transforms.transforms attribute)": [[5, "super_gradients.training.transforms.Transforms.RandomVerticalFlip"]], "resize (super_gradients.training.transforms.transforms attribute)": [[5, "super_gradients.training.transforms.Transforms.Resize"]], "shelfnet_ohem_loss (super_gradients.training.losses.losses attribute)": [[5, "super_gradients.training.losses.Losses.SHELFNET_OHEM_LOSS"]], "shelfnet_se_loss (super_gradients.training.losses.losses attribute)": [[5, "super_gradients.training.losses.Losses.SHELFNET_SE_LOSS"]], "ssdloss (class in super_gradients.training.losses)": [[5, "super_gradients.training.losses.SSDLoss"]], "ssd_loss (super_gradients.training.losses.losses attribute)": [[5, "super_gradients.training.losses.Losses.SSD_LOSS"]], "stdc_loss (super_gradients.training.losses.losses attribute)": [[5, "super_gradients.training.losses.Losses.STDC_LOSS"]], "segcolorjitter (super_gradients.training.transforms.transforms attribute)": [[5, "super_gradients.training.transforms.Transforms.SegColorJitter"]], "segcropimageandmask (super_gradients.training.transforms.transforms attribute)": [[5, "super_gradients.training.transforms.Transforms.SegCropImageAndMask"]], "segpadshorttocropsize (super_gradients.training.transforms.transforms attribute)": [[5, "super_gradients.training.transforms.Transforms.SegPadShortToCropSize"]], "segrandomflip (super_gradients.training.transforms.transforms attribute)": [[5, "super_gradients.training.transforms.Transforms.SegRandomFlip"]], "segrandomgaussianblur (super_gradients.training.transforms.transforms attribute)": [[5, "super_gradients.training.transforms.Transforms.SegRandomGaussianBlur"]], "segrandomrescale (super_gradients.training.transforms.transforms attribute)": [[5, "super_gradients.training.transforms.Transforms.SegRandomRescale"]], "segrandomrotate (super_gradients.training.transforms.transforms attribute)": [[5, "super_gradients.training.transforms.Transforms.SegRandomRotate"]], "segrescale (super_gradients.training.transforms.transforms attribute)": [[5, "super_gradients.training.transforms.Transforms.SegRescale"]], "segresize (super_gradients.training.transforms.transforms attribute)": [[5, "super_gradients.training.transforms.Transforms.SegResize"]], "segmentationdataset (class in super_gradients.training.datasets)": [[5, "super_gradients.training.datasets.SegmentationDataSet"]], "shelfnetohemloss (class in super_gradients.training.losses)": [[5, "super_gradients.training.losses.ShelfNetOHEMLoss"]], "shelfnetsemanticencodingloss (class in super_gradients.training.losses)": [[5, "super_gradients.training.losses.ShelfNetSemanticEncodingLoss"]], "strictload (class in super_gradients.training)": [[5, "super_gradients.training.StrictLoad"]], "strictload (class in super_gradients.training.sg_trainer)": [[5, "super_gradients.training.sg_trainer.StrictLoad"]], "superviselypersonsdataset (class in super_gradients.training.datasets)": [[5, "super_gradients.training.datasets.SuperviselyPersonsDataset"]], "test (super_gradients.training.evaluationtype attribute)": [[5, "super_gradients.training.EvaluationType.TEST"]], "top5 (super_gradients.training.metrics.metrics attribute)": [[5, "super_gradients.training.metrics.Metrics.TOP5"]], "tencrop (super_gradients.training.transforms.transforms attribute)": [[5, "super_gradients.training.transforms.Transforms.TenCrop"]], "timer (class in super_gradients.training.utils)": [[5, "super_gradients.training.utils.Timer"]], "topilimage (super_gradients.training.transforms.transforms attribute)": [[5, "super_gradients.training.transforms.Transforms.ToPILImage"]], "totensor (super_gradients.training.transforms.transforms attribute)": [[5, "super_gradients.training.transforms.Transforms.ToTensor"]], "top5 (class in super_gradients.training.metrics)": [[5, "super_gradients.training.metrics.Top5"]], "toytestclassificationmetric (class in super_gradients.training.metrics)": [[5, "super_gradients.training.metrics.ToyTestClassificationMetric"]], "trainer (class in super_gradients.training)": [[5, "super_gradients.training.Trainer"]], "trainer (class in super_gradients.training.sg_trainer)": [[5, "super_gradients.training.sg_trainer.Trainer"]], "transforms (class in super_gradients.training.transforms)": [[5, "super_gradients.training.transforms.Transforms"]], "validation (super_gradients.training.evaluationtype attribute)": [[5, "super_gradients.training.EvaluationType.VALIDATION"]], "wrappedmodel (class in super_gradients.training.utils)": [[5, "super_gradients.training.utils.WrappedModel"]], "yolox_fast_loss (super_gradients.training.losses.losses attribute)": [[5, "super_gradients.training.losses.Losses.YOLOX_FAST_LOSS"]], "yolox_loss (super_gradients.training.losses.losses attribute)": [[5, "super_gradients.training.losses.Losses.YOLOX_LOSS"]], "yoloxdetectionloss (class in super_gradients.training.losses)": [[5, "super_gradients.training.losses.YoloXDetectionLoss"]], "yoloxfastdetectionloss (class in super_gradients.training.losses)": [[5, "super_gradients.training.losses.YoloXFastDetectionLoss"]], "accuracy() (in module super_gradients.training.metrics)": [[5, "super_gradients.training.metrics.accuracy"]], "adapt_state_dict_to_fit_model_layer_names() (in module super_gradients.training.utils)": [[5, "super_gradients.training.utils.adapt_state_dict_to_fit_model_layer_names"]], "apply_transforms() (super_gradients.training.datasets.detectiondataset method)": [[5, "super_gradients.training.datasets.DetectionDataset.apply_transforms"]], "ar_thr (super_gradients.training.transforms.detectionrandomaffine attribute)": [[5, "super_gradients.training.transforms.DetectionRandomAffine.ar_thr"]], "area_thr (super_gradients.training.transforms.detectionrandomaffine attribute)": [[5, "super_gradients.training.transforms.DetectionRandomAffine.area_thr"]], "center_sampling_radius (super_gradients.training.losses.yoloxdetectionloss attribute)": [[5, "super_gradients.training.losses.YoloXDetectionLoss.center_sampling_radius"]], "cifar100_train() (in module super_gradients.training.dataloaders)": [[5, "super_gradients.training.dataloaders.cifar100_train"]], "cifar100_val() (in module super_gradients.training.dataloaders)": [[5, "super_gradients.training.dataloaders.cifar100_val"]], "cifar10_resnet_train_params() (in module super_gradients.training.training_hyperparams)": [[5, "super_gradients.training.training_hyperparams.cifar10_resnet_train_params"]], "cifar10_train() (in module super_gradients.training.dataloaders)": [[5, "super_gradients.training.dataloaders.cifar10_train"]], "cifar10_val() (in module super_gradients.training.dataloaders)": [[5, "super_gradients.training.dataloaders.cifar10_val"]], "cityscapes_ddrnet_train() (in module super_gradients.training.dataloaders)": [[5, "super_gradients.training.dataloaders.cityscapes_ddrnet_train"]], "cityscapes_ddrnet_train_params() (in module super_gradients.training.training_hyperparams)": [[5, "super_gradients.training.training_hyperparams.cityscapes_ddrnet_train_params"]], "cityscapes_ddrnet_val() (in module super_gradients.training.dataloaders)": [[5, "super_gradients.training.dataloaders.cityscapes_ddrnet_val"]], "cityscapes_regseg48_train() (in module super_gradients.training.dataloaders)": [[5, "super_gradients.training.dataloaders.cityscapes_regseg48_train"]], "cityscapes_regseg48_train_params() (in module super_gradients.training.training_hyperparams)": [[5, "super_gradients.training.training_hyperparams.cityscapes_regseg48_train_params"]], "cityscapes_regseg48_val() (in module super_gradients.training.dataloaders)": [[5, "super_gradients.training.dataloaders.cityscapes_regseg48_val"]], "cityscapes_stdc_base_train_params() (in module super_gradients.training.training_hyperparams)": [[5, "super_gradients.training.training_hyperparams.cityscapes_stdc_base_train_params"]], "cityscapes_stdc_seg50_train() (in module super_gradients.training.dataloaders)": [[5, "super_gradients.training.dataloaders.cityscapes_stdc_seg50_train"]], "cityscapes_stdc_seg50_train_params() (in module super_gradients.training.training_hyperparams)": [[5, "super_gradients.training.training_hyperparams.cityscapes_stdc_seg50_train_params"]], "cityscapes_stdc_seg50_val() (in module super_gradients.training.dataloaders)": [[5, "super_gradients.training.dataloaders.cityscapes_stdc_seg50_val"]], "cityscapes_stdc_seg75_train() (in module super_gradients.training.dataloaders)": [[5, "super_gradients.training.dataloaders.cityscapes_stdc_seg75_train"]], "cityscapes_stdc_seg75_train_params() (in module super_gradients.training.training_hyperparams)": [[5, "super_gradients.training.training_hyperparams.cityscapes_stdc_seg75_train_params"]], "cityscapes_stdc_seg75_val() (in module super_gradients.training.dataloaders)": [[5, "super_gradients.training.dataloaders.cityscapes_stdc_seg75_val"]], "cityscapes_train() (in module super_gradients.training.dataloaders)": [[5, "super_gradients.training.dataloaders.cityscapes_train"]], "cityscapes_val() (in module super_gradients.training.dataloaders)": [[5, "super_gradients.training.dataloaders.cityscapes_val"]], "close() (super_gradients.training.transforms.detectionmosaic method)": [[5, "super_gradients.training.transforms.DetectionMosaic.close"]], "close() (super_gradients.training.transforms.detectionrandomaffine method)": [[5, "super_gradients.training.transforms.DetectionRandomAffine.close"]], "coco2017_ssd_lite_mobilenet_v2_train_params() (in module super_gradients.training.training_hyperparams)": [[5, "super_gradients.training.training_hyperparams.coco2017_ssd_lite_mobilenet_v2_train_params"]], "coco2017_train() (in module super_gradients.training.dataloaders)": [[5, "super_gradients.training.dataloaders.coco2017_train"]], "coco2017_train_ssd_lite_mobilenet_v2() (in module super_gradients.training.dataloaders)": [[5, "super_gradients.training.dataloaders.coco2017_train_ssd_lite_mobilenet_v2"]], "coco2017_train_yolox() (in module super_gradients.training.dataloaders)": [[5, "super_gradients.training.dataloaders.coco2017_train_yolox"]], "coco2017_val() (in module super_gradients.training.dataloaders)": [[5, "super_gradients.training.dataloaders.coco2017_val"]], "coco2017_val_ssd_lite_mobilenet_v2() (in module super_gradients.training.dataloaders)": [[5, "super_gradients.training.dataloaders.coco2017_val_ssd_lite_mobilenet_v2"]], "coco2017_val_yolox() (in module super_gradients.training.dataloaders)": [[5, "super_gradients.training.dataloaders.coco2017_val_yolox"]], "coco2017_yolox_train_params() (in module super_gradients.training.training_hyperparams)": [[5, "super_gradients.training.training_hyperparams.coco2017_yolox_train_params"]], "coco_segmentation_shelfnet_lw_train_params() (in module super_gradients.training.training_hyperparams)": [[5, "super_gradients.training.training_hyperparams.coco_segmentation_shelfnet_lw_train_params"]], "coco_segmentation_train() (in module super_gradients.training.dataloaders)": [[5, "super_gradients.training.dataloaders.coco_segmentation_train"]], "coco_segmentation_val() (in module super_gradients.training.dataloaders)": [[5, "super_gradients.training.dataloaders.coco_segmentation_val"]], "component_names (super_gradients.training.losses.diceceedgeloss property)": [[5, "super_gradients.training.losses.DiceCEEdgeLoss.component_names"]], "component_names (super_gradients.training.losses.kdlogitsloss property)": [[5, "super_gradients.training.losses.KDLogitsLoss.component_names"]], "component_names (super_gradients.training.losses.ssdloss property)": [[5, "super_gradients.training.losses.SSDLoss.component_names"]], "component_names (super_gradients.training.losses.shelfnetohemloss property)": [[5, "super_gradients.training.losses.ShelfNetOHEMLoss.component_names"]], "component_names (super_gradients.training.losses.shelfnetsemanticencodingloss property)": [[5, "super_gradients.training.losses.ShelfNetSemanticEncodingLoss.component_names"]], "component_names (super_gradients.training.losses.yoloxdetectionloss property)": [[5, "super_gradients.training.losses.YoloXDetectionLoss.component_names"]], "compute() (super_gradients.training.metrics.binarydice method)": [[5, "super_gradients.training.metrics.BinaryDice.compute"]], "compute() (super_gradients.training.metrics.binaryiou method)": [[5, "super_gradients.training.metrics.BinaryIOU.compute"]], "compute() (super_gradients.training.metrics.detectionmetrics method)": [[5, "super_gradients.training.metrics.DetectionMetrics.compute"]], "compute() (super_gradients.training.metrics.dice method)": [[5, "super_gradients.training.metrics.Dice.compute"]], "compute() (super_gradients.training.metrics.pixelaccuracy method)": [[5, "super_gradients.training.metrics.PixelAccuracy.compute"]], "compute() (super_gradients.training.metrics.top5 method)": [[5, "super_gradients.training.metrics.Top5.compute"]], "compute() (super_gradients.training.metrics.toytestclassificationmetric method)": [[5, "super_gradients.training.metrics.ToyTestClassificationMetric.compute"]], "confmat (super_gradients.training.metrics.binarydice attribute)": [[5, "super_gradients.training.metrics.BinaryDice.confmat"]], "confmat (super_gradients.training.metrics.binaryiou attribute)": [[5, "super_gradients.training.metrics.BinaryIOU.confmat"]], "confmat (super_gradients.training.metrics.dice attribute)": [[5, "super_gradients.training.metrics.Dice.confmat"]], "confmat (super_gradients.training.metrics.iou attribute)": [[5, "super_gradients.training.metrics.IoU.confmat"]], "convert_to_tensor() (in module super_gradients.training.utils)": [[5, "super_gradients.training.utils.convert_to_tensor"]], "correct (super_gradients.training.metrics.accuracy attribute)": [[5, "super_gradients.training.metrics.Accuracy.correct"]], "cumulative_sizes (super_gradients.training.datasets.pascalvocandaugunifieddataset attribute)": [[5, "super_gradients.training.datasets.PascalVOCAndAUGUnifiedDataset.cumulative_sizes"]], "cutout() (super_gradients.training.dataaugmentation static method)": [[5, "super_gradients.training.DataAugmentation.cutout"]], "cutout() (super_gradients.training.datasets.dataaugmentation static method)": [[5, "super_gradients.training.datasets.DataAugmentation.cutout"]], "datasets (super_gradients.training.datasets.pascalvocandaugunifieddataset attribute)": [[5, "super_gradients.training.datasets.PascalVOCAndAUGUnifiedDataset.datasets"]], "decode_segmentation_mask() (super_gradients.training.datasets.pascalvoc2012segmentationdataset method)": [[5, "super_gradients.training.datasets.PascalVOC2012SegmentationDataSet.decode_segmentation_mask"]], "degrees (super_gradients.training.transforms.detectionrandomaffine attribute)": [[5, "super_gradients.training.transforms.DetectionRandomAffine.degrees"]], "dict() (super_gradients.training.multigpumode class method)": [[5, "super_gradients.training.MultiGPUMode.dict"]], "dict() (super_gradients.training.sg_trainer.multigpumode class method)": [[5, "super_gradients.training.sg_trainer.MultiGPUMode.dict"]], "dist_sync_on_step (super_gradients.training.metrics.detectionmetrics attribute)": [[5, "super_gradients.training.metrics.DetectionMetrics.dist_sync_on_step"]], "download() (super_gradients.training.datasets.pascalvocdetectiondataset static method)": [[5, "super_gradients.training.datasets.PascalVOCDetectionDataset.download"]], "dynamic_k_matching() (super_gradients.training.losses.yoloxdetectionloss method)": [[5, "super_gradients.training.losses.YoloXDetectionLoss.dynamic_k_matching"]], "enable (super_gradients.training.transforms.detectionrandomaffine attribute)": [[5, "super_gradients.training.transforms.DetectionRandomAffine.enable"]], "enable_mosaic (super_gradients.training.transforms.detectionmosaic attribute)": [[5, "super_gradients.training.transforms.DetectionMosaic.enable_mosaic"]], "evaluate() (super_gradients.training.trainer method)": [[5, "super_gradients.training.Trainer.evaluate"]], "evaluate() (super_gradients.training.sg_trainer.trainer method)": [[5, "super_gradients.training.sg_trainer.Trainer.evaluate"]], "evaluate_checkpoint() (super_gradients.training.trainer class method)": [[5, "super_gradients.training.Trainer.evaluate_checkpoint"]], "evaluate_checkpoint() (super_gradients.training.sg_trainer.trainer class method)": [[5, "super_gradients.training.sg_trainer.Trainer.evaluate_checkpoint"]], "evaluate_from_recipe() (super_gradients.training.trainer class method)": [[5, "super_gradients.training.Trainer.evaluate_from_recipe"]], "evaluate_from_recipe() (super_gradients.training.sg_trainer.trainer class method)": [[5, "super_gradients.training.sg_trainer.Trainer.evaluate_from_recipe"]], "filter_box_candidates (super_gradients.training.transforms.detectionrandomaffine attribute)": [[5, "super_gradients.training.transforms.DetectionRandomAffine.filter_box_candidates"]], "forward() (super_gradients.training.losses.bcediceloss method)": [[5, "super_gradients.training.losses.BCEDiceLoss.forward"]], "forward() (super_gradients.training.losses.diceceedgeloss method)": [[5, "super_gradients.training.losses.DiceCEEdgeLoss.forward"]], "forward() (super_gradients.training.losses.focalloss method)": [[5, "super_gradients.training.losses.FocalLoss.forward"]], "forward() (super_gradients.training.losses.kdlogitsloss method)": [[5, "super_gradients.training.losses.KDLogitsLoss.forward"]], "forward() (super_gradients.training.losses.labelsmoothingcrossentropyloss method)": [[5, "super_gradients.training.losses.LabelSmoothingCrossEntropyLoss.forward"]], "forward() (super_gradients.training.losses.rsquaredloss method)": [[5, "super_gradients.training.losses.RSquaredLoss.forward"]], "forward() (super_gradients.training.losses.ssdloss method)": [[5, "super_gradients.training.losses.SSDLoss.forward"]], "forward() (super_gradients.training.losses.shelfnetohemloss method)": [[5, "super_gradients.training.losses.ShelfNetOHEMLoss.forward"]], "forward() (super_gradients.training.losses.shelfnetsemanticencodingloss method)": [[5, "super_gradients.training.losses.ShelfNetSemanticEncodingLoss.forward"]], "forward() (super_gradients.training.losses.yoloxdetectionloss method)": [[5, "super_gradients.training.losses.YoloXDetectionLoss.forward"]], "forward() (super_gradients.training.utils.wrappedmodel method)": [[5, "super_gradients.training.utils.WrappedModel.forward"]], "get() (in module super_gradients.training.dataloaders)": [[5, "super_gradients.training.dataloaders.get"]], "get() (in module super_gradients.training.training_hyperparams)": [[5, "super_gradients.training.training_hyperparams.get"]], "get_arch_params (super_gradients.training.trainer property)": [[5, "super_gradients.training.Trainer.get_arch_params"]], "get_arch_params (super_gradients.training.sg_trainer.trainer property)": [[5, "super_gradients.training.sg_trainer.Trainer.get_arch_params"]], "get_architecture (super_gradients.training.trainer property)": [[5, "super_gradients.training.Trainer.get_architecture"]], "get_architecture (super_gradients.training.sg_trainer.trainer property)": [[5, "super_gradients.training.sg_trainer.Trainer.get_architecture"]], "get_assignments() (super_gradients.training.losses.yoloxdetectionloss method)": [[5, "super_gradients.training.losses.YoloXDetectionLoss.get_assignments"]], "get_data_loader() (in module super_gradients.training.dataloaders)": [[5, "super_gradients.training.dataloaders.get_data_loader"]], "get_in_boxes_info() (super_gradients.training.losses.yoloxdetectionloss method)": [[5, "super_gradients.training.losses.YoloXDetectionLoss.get_in_boxes_info"]], "get_l1_target() (super_gradients.training.losses.yoloxdetectionloss method)": [[5, "super_gradients.training.losses.YoloXDetectionLoss.get_l1_target"]], "get_module (super_gradients.training.trainer property)": [[5, "super_gradients.training.Trainer.get_module"]], "get_module (super_gradients.training.sg_trainer.trainer property)": [[5, "super_gradients.training.sg_trainer.Trainer.get_module"]], "get_net (super_gradients.training.trainer property)": [[5, "super_gradients.training.Trainer.get_net"]], "get_net (super_gradients.training.sg_trainer.trainer property)": [[5, "super_gradients.training.sg_trainer.Trainer.get_net"]], "get_param() (in module super_gradients.training.utils)": [[5, "super_gradients.training.utils.get_param"]], "get_random_item() (super_gradients.training.datasets.detectiondataset method)": [[5, "super_gradients.training.datasets.DetectionDataset.get_random_item"]], "get_random_sample() (super_gradients.training.datasets.detectiondataset method)": [[5, "super_gradients.training.datasets.DetectionDataset.get_random_sample"]], "get_random_samples() (super_gradients.training.datasets.detectiondataset method)": [[5, "super_gradients.training.datasets.DetectionDataset.get_random_samples"]], "get_resized_image() (super_gradients.training.datasets.detectiondataset method)": [[5, "super_gradients.training.datasets.DetectionDataset.get_resized_image"]], "get_sample() (super_gradients.training.datasets.detectiondataset method)": [[5, "super_gradients.training.datasets.DetectionDataset.get_sample"]], "get_structure (super_gradients.training.trainer property)": [[5, "super_gradients.training.Trainer.get_structure"]], "get_structure (super_gradients.training.sg_trainer.trainer property)": [[5, "super_gradients.training.sg_trainer.Trainer.get_structure"]], "ignore_index (super_gradients.training.losses.labelsmoothingcrossentropyloss attribute)": [[5, "super_gradients.training.losses.LabelSmoothingCrossEntropyLoss.ignore_index"]], "ignore_index (super_gradients.training.losses.shelfnetsemanticencodingloss attribute)": [[5, "super_gradients.training.losses.ShelfNetSemanticEncodingLoss.ignore_index"]], "imagenet_efficientnet_train() (in module super_gradients.training.dataloaders)": [[5, "super_gradients.training.dataloaders.imagenet_efficientnet_train"]], "imagenet_efficientnet_train_params() (in module super_gradients.training.training_hyperparams)": [[5, "super_gradients.training.training_hyperparams.imagenet_efficientnet_train_params"]], "imagenet_efficientnet_val() (in module super_gradients.training.dataloaders)": [[5, "super_gradients.training.dataloaders.imagenet_efficientnet_val"]], "imagenet_mobilenetv2_train() (in module super_gradients.training.dataloaders)": [[5, "super_gradients.training.dataloaders.imagenet_mobilenetv2_train"]], "imagenet_mobilenetv2_train_params() (in module super_gradients.training.training_hyperparams)": [[5, "super_gradients.training.training_hyperparams.imagenet_mobilenetv2_train_params"]], "imagenet_mobilenetv2_val() (in module super_gradients.training.dataloaders)": [[5, "super_gradients.training.dataloaders.imagenet_mobilenetv2_val"]], "imagenet_mobilenetv3_base_train_params() (in module super_gradients.training.training_hyperparams)": [[5, "super_gradients.training.training_hyperparams.imagenet_mobilenetv3_base_train_params"]], "imagenet_mobilenetv3_large_train_params() (in module super_gradients.training.training_hyperparams)": [[5, "super_gradients.training.training_hyperparams.imagenet_mobilenetv3_large_train_params"]], "imagenet_mobilenetv3_small_train_params() (in module super_gradients.training.training_hyperparams)": [[5, "super_gradients.training.training_hyperparams.imagenet_mobilenetv3_small_train_params"]], "imagenet_mobilenetv3_train() (in module super_gradients.training.dataloaders)": [[5, "super_gradients.training.dataloaders.imagenet_mobilenetv3_train"]], "imagenet_mobilenetv3_val() (in module super_gradients.training.dataloaders)": [[5, "super_gradients.training.dataloaders.imagenet_mobilenetv3_val"]], "imagenet_regnety_train() (in module super_gradients.training.dataloaders)": [[5, "super_gradients.training.dataloaders.imagenet_regnetY_train"]], "imagenet_regnety_train_params() (in module super_gradients.training.training_hyperparams)": [[5, "super_gradients.training.training_hyperparams.imagenet_regnetY_train_params"]], "imagenet_regnety_val() (in module super_gradients.training.dataloaders)": [[5, "super_gradients.training.dataloaders.imagenet_regnetY_val"]], "imagenet_repvgg_train_params() (in module super_gradients.training.training_hyperparams)": [[5, "super_gradients.training.training_hyperparams.imagenet_repvgg_train_params"]], "imagenet_resnet50_kd_train() (in module super_gradients.training.dataloaders)": [[5, "super_gradients.training.dataloaders.imagenet_resnet50_kd_train"]], "imagenet_resnet50_kd_train_params() (in module super_gradients.training.training_hyperparams)": [[5, "super_gradients.training.training_hyperparams.imagenet_resnet50_kd_train_params"]], "imagenet_resnet50_kd_val() (in module super_gradients.training.dataloaders)": [[5, "super_gradients.training.dataloaders.imagenet_resnet50_kd_val"]], "imagenet_resnet50_train() (in module super_gradients.training.dataloaders)": [[5, "super_gradients.training.dataloaders.imagenet_resnet50_train"]], "imagenet_resnet50_train_params() (in module super_gradients.training.training_hyperparams)": [[5, "super_gradients.training.training_hyperparams.imagenet_resnet50_train_params"]], "imagenet_resnet50_val() (in module super_gradients.training.dataloaders)": [[5, "super_gradients.training.dataloaders.imagenet_resnet50_val"]], "imagenet_train() (in module super_gradients.training.dataloaders)": [[5, "super_gradients.training.dataloaders.imagenet_train"]], "imagenet_val() (in module super_gradients.training.dataloaders)": [[5, "super_gradients.training.dataloaders.imagenet_val"]], "imagenet_vit_base_train() (in module super_gradients.training.dataloaders)": [[5, "super_gradients.training.dataloaders.imagenet_vit_base_train"]], "imagenet_vit_base_train_params() (in module super_gradients.training.training_hyperparams)": [[5, "super_gradients.training.training_hyperparams.imagenet_vit_base_train_params"]], "imagenet_vit_base_val() (in module super_gradients.training.dataloaders)": [[5, "super_gradients.training.dataloaders.imagenet_vit_base_val"]], "imagenet_vit_large_train_params() (in module super_gradients.training.training_hyperparams)": [[5, "super_gradients.training.training_hyperparams.imagenet_vit_large_train_params"]], "input_dim (super_gradients.training.transforms.detectionmosaic attribute)": [[5, "super_gradients.training.transforms.DetectionMosaic.input_dim"]], "input_dim (super_gradients.training.transforms.detectionpaddedrescale attribute)": [[5, "super_gradients.training.transforms.DetectionPaddedRescale.input_dim"]], "iou_thresholds (super_gradients.training.metrics.detectionmetrics attribute)": [[5, "super_gradients.training.metrics.DetectionMetrics.iou_thresholds"]], "iou_type (super_gradients.training.losses.yoloxdetectionloss attribute)": [[5, "super_gradients.training.losses.YoloXDetectionLoss.iou_type"]], "label_smoothing (super_gradients.training.losses.labelsmoothingcrossentropyloss attribute)": [[5, "super_gradients.training.losses.LabelSmoothingCrossEntropyLoss.label_smoothing"]], "label_smoothing (super_gradients.training.losses.shelfnetsemanticencodingloss attribute)": [[5, "super_gradients.training.losses.ShelfNetSemanticEncodingLoss.label_smoothing"]], "loss_weights (super_gradients.training.losses.bcediceloss attribute)": [[5, "super_gradients.training.losses.BCEDiceLoss.loss_weights"]], "match_dboxes() (super_gradients.training.losses.ssdloss method)": [[5, "super_gradients.training.losses.SSDLoss.match_dboxes"]], "max_targets (super_gradients.training.transforms.detectiontargetsformattransform attribute)": [[5, "super_gradients.training.transforms.DetectionTargetsFormatTransform.max_targets"]], "min_bbox_edge_size (super_gradients.training.transforms.detectiontargetsformattransform attribute)": [[5, "super_gradients.training.transforms.DetectionTargetsFormatTransform.min_bbox_edge_size"]], "normalize() (super_gradients.training.dataaugmentation static method)": [[5, "super_gradients.training.DataAugmentation.normalize"]], "normalize() (super_gradients.training.datasets.dataaugmentation static method)": [[5, "super_gradients.training.datasets.DataAugmentation.normalize"]], "normalize_targets (super_gradients.training.metrics.detectionmetrics attribute)": [[5, "super_gradients.training.metrics.DetectionMetrics.normalize_targets"]], "num_classes (super_gradients.training.losses.yoloxdetectionloss attribute)": [[5, "super_gradients.training.losses.YoloXDetectionLoss.num_classes"]], "num_cls (super_gradients.training.metrics.detectionmetrics attribute)": [[5, "super_gradients.training.metrics.DetectionMetrics.num_cls"]], "output_format (super_gradients.training.transforms.detectiontargetsformattransform attribute)": [[5, "super_gradients.training.transforms.DetectionTargetsFormatTransform.output_format"]], "output_target_format (super_gradients.training.datasets.detectiondataset property)": [[5, "super_gradients.training.datasets.DetectionDataset.output_target_format"]], "override() (super_gradients.training.utils.hpmstruct method)": [[5, "super_gradients.training.utils.HpmStruct.override"]], "pascal_aug_segmentation_train() (in module super_gradients.training.dataloaders)": [[5, "super_gradients.training.dataloaders.pascal_aug_segmentation_train"]], "pascal_aug_segmentation_val() (in module super_gradients.training.dataloaders)": [[5, "super_gradients.training.dataloaders.pascal_aug_segmentation_val"]], "pascal_voc_detection_train() (in module super_gradients.training.dataloaders)": [[5, "super_gradients.training.dataloaders.pascal_voc_detection_train"]], "pascal_voc_detection_val() (in module super_gradients.training.dataloaders)": [[5, "super_gradients.training.dataloaders.pascal_voc_detection_val"]], "pascal_voc_segmentation_train() (in module super_gradients.training.dataloaders)": [[5, "super_gradients.training.dataloaders.pascal_voc_segmentation_train"]], "pascal_voc_segmentation_val() (in module super_gradients.training.dataloaders)": [[5, "super_gradients.training.dataloaders.pascal_voc_segmentation_val"]], "plot() (super_gradients.training.datasets.detectiondataset method)": [[5, "super_gradients.training.datasets.DetectionDataset.plot"]], "post_prediction_callback (super_gradients.training.metrics.detectionmetrics attribute)": [[5, "super_gradients.training.metrics.DetectionMetrics.post_prediction_callback"]], "predict() (super_gradients.training.trainer method)": [[5, "super_gradients.training.Trainer.predict"]], "predict() (super_gradients.training.sg_trainer.trainer method)": [[5, "super_gradients.training.sg_trainer.Trainer.predict"]], "prepare_predictions() (super_gradients.training.losses.yoloxdetectionloss method)": [[5, "super_gradients.training.losses.YoloXDetectionLoss.prepare_predictions"]], "prob (super_gradients.training.transforms.detectionmosaic attribute)": [[5, "super_gradients.training.transforms.DetectionMosaic.prob"]], "raise_informative_runtime_error() (in module super_gradients.training.utils)": [[5, "super_gradients.training.utils.raise_informative_runtime_error"]], "random_seed() (in module super_gradients.training.utils)": [[5, "super_gradients.training.utils.random_seed"]], "recall_thresholds (super_gradients.training.metrics.detectionmetrics attribute)": [[5, "super_gradients.training.metrics.DetectionMetrics.recall_thresholds"]], "reduction (super_gradients.training.losses.diceceedgeloss attribute)": [[5, "super_gradients.training.losses.DiceCEEdgeLoss.reduction"]], "reduction (super_gradients.training.losses.focalloss attribute)": [[5, "super_gradients.training.losses.FocalLoss.reduction"]], "reduction (super_gradients.training.losses.kdlogitsloss attribute)": [[5, "super_gradients.training.losses.KDLogitsLoss.reduction"]], "reduction (super_gradients.training.losses.rsquaredloss attribute)": [[5, "super_gradients.training.losses.RSquaredLoss.reduction"]], "reduction (super_gradients.training.losses.ssdloss attribute)": [[5, "super_gradients.training.losses.SSDLoss.reduction"]], "reduction (super_gradients.training.losses.shelfnetohemloss attribute)": [[5, "super_gradients.training.losses.ShelfNetOHEMLoss.reduction"]], "reduction (super_gradients.training.losses.yoloxdetectionloss attribute)": [[5, "super_gradients.training.losses.YoloXDetectionLoss.reduction"]], "reduction (super_gradients.training.losses.yoloxfastdetectionloss attribute)": [[5, "super_gradients.training.losses.YoloXFastDetectionLoss.reduction"]], "resume_experiment() (super_gradients.training.trainer class method)": [[5, "super_gradients.training.Trainer.resume_experiment"]], "resume_experiment() (super_gradients.training.sg_trainer.trainer class method)": [[5, "super_gradients.training.sg_trainer.Trainer.resume_experiment"]], "sample_loader() (super_gradients.training.datasets.segmentationdataset static method)": [[5, "super_gradients.training.datasets.SegmentationDataSet.sample_loader"]], "sample_transform() (super_gradients.training.datasets.segmentationdataset static method)": [[5, "super_gradients.training.datasets.SegmentationDataSet.sample_transform"]], "scales (super_gradients.training.transforms.detectionrandomaffine attribute)": [[5, "super_gradients.training.transforms.DetectionRandomAffine.scales"]], "score_threshold (super_gradients.training.metrics.detectionmetrics attribute)": [[5, "super_gradients.training.metrics.DetectionMetrics.score_threshold"]], "set_ckpt_best_name() (super_gradients.training.trainer method)": [[5, "super_gradients.training.Trainer.set_ckpt_best_name"]], "set_ckpt_best_name() (super_gradients.training.sg_trainer.trainer method)": [[5, "super_gradients.training.sg_trainer.Trainer.set_ckpt_best_name"]], "set_ema() (super_gradients.training.trainer method)": [[5, "super_gradients.training.Trainer.set_ema"]], "set_ema() (super_gradients.training.sg_trainer.trainer method)": [[5, "super_gradients.training.sg_trainer.Trainer.set_ema"]], "set_experiment_name() (super_gradients.training.trainer method)": [[5, "super_gradients.training.Trainer.set_experiment_name"]], "set_experiment_name() (super_gradients.training.sg_trainer.trainer method)": [[5, "super_gradients.training.sg_trainer.Trainer.set_experiment_name"]], "set_module() (super_gradients.training.trainer method)": [[5, "super_gradients.training.Trainer.set_module"]], "set_module() (super_gradients.training.sg_trainer.trainer method)": [[5, "super_gradients.training.sg_trainer.Trainer.set_module"]], "set_net() (super_gradients.training.trainer method)": [[5, "super_gradients.training.Trainer.set_net"]], "set_net() (super_gradients.training.sg_trainer.trainer method)": [[5, "super_gradients.training.sg_trainer.Trainer.set_net"]], "set_schema() (super_gradients.training.utils.hpmstruct method)": [[5, "super_gradients.training.utils.HpmStruct.set_schema"]], "shear (super_gradients.training.transforms.detectionrandomaffine attribute)": [[5, "super_gradients.training.transforms.DetectionRandomAffine.shear"]], "start() (super_gradients.training.utils.timer method)": [[5, "super_gradients.training.utils.Timer.start"]], "stop() (super_gradients.training.utils.timer method)": [[5, "super_gradients.training.utils.Timer.stop"]], "strides (super_gradients.training.losses.yoloxdetectionloss attribute)": [[5, "super_gradients.training.losses.YoloXDetectionLoss.strides"]], "super_gradients.training": [[5, "module-super_gradients.training"]], "super_gradients.training.dataloaders": [[5, "module-super_gradients.training.dataloaders"]], "super_gradients.training.datasets": [[5, "module-super_gradients.training.datasets"]], "super_gradients.training.exceptions": [[5, "module-super_gradients.training.exceptions"]], "super_gradients.training.kd_trainer": [[5, "module-super_gradients.training.kd_trainer"]], "super_gradients.training.legacy": [[5, "module-super_gradients.training.legacy"]], "super_gradients.training.losses": [[5, "module-super_gradients.training.losses"]], "super_gradients.training.metrics": [[5, "module-super_gradients.training.metrics"]], "super_gradients.training.models": [[5, "module-super_gradients.training.models"]], "super_gradients.training.sg_trainer": [[5, "module-super_gradients.training.sg_trainer"]], "super_gradients.training.training_hyperparams": [[5, "module-super_gradients.training.training_hyperparams"]], "super_gradients.training.transforms": [[5, "module-super_gradients.training.transforms"]], "super_gradients.training.utils": [[5, "module-super_gradients.training.utils"]], "supervisely_persons_train() (in module super_gradients.training.dataloaders)": [[5, "super_gradients.training.dataloaders.supervisely_persons_train"]], "supervisely_persons_val() (in module super_gradients.training.dataloaders)": [[5, "super_gradients.training.dataloaders.supervisely_persons_val"]], "swap (super_gradients.training.transforms.detectionpaddedrescale attribute)": [[5, "super_gradients.training.transforms.DetectionPaddedRescale.swap"]], "target_loader() (super_gradients.training.datasets.cocosegmentationdataset method)": [[5, "super_gradients.training.datasets.CoCoSegmentationDataSet.target_loader"]], "target_loader() (super_gradients.training.datasets.pascalaug2012segmentationdataset static method)": [[5, "super_gradients.training.datasets.PascalAUG2012SegmentationDataSet.target_loader"]], "target_loader() (super_gradients.training.datasets.segmentationdataset static method)": [[5, "super_gradients.training.datasets.SegmentationDataSet.target_loader"]], "target_size (super_gradients.training.transforms.detectionrandomaffine attribute)": [[5, "super_gradients.training.transforms.DetectionRandomAffine.target_size"]], "target_transform() (super_gradients.training.datasets.pascalvoc2012segmentationdataset static method)": [[5, "super_gradients.training.datasets.PascalVOC2012SegmentationDataSet.target_transform"]], "target_transform() (super_gradients.training.datasets.segmentationdataset static method)": [[5, "super_gradients.training.datasets.SegmentationDataSet.target_transform"]], "tensor_container_to_device() (in module super_gradients.training.utils)": [[5, "super_gradients.training.utils.tensor_container_to_device"]], "test() (super_gradients.training.trainer method)": [[5, "super_gradients.training.Trainer.test"]], "test() (super_gradients.training.sg_trainer.trainer method)": [[5, "super_gradients.training.sg_trainer.Trainer.test"]], "tiny_imagenet_train() (in module super_gradients.training.dataloaders)": [[5, "super_gradients.training.dataloaders.tiny_imagenet_train"]], "tiny_imagenet_val() (in module super_gradients.training.dataloaders)": [[5, "super_gradients.training.dataloaders.tiny_imagenet_val"]], "to_dict() (super_gradients.training.utils.hpmstruct method)": [[5, "super_gradients.training.utils.HpmStruct.to_dict"]], "to_tensor() (super_gradients.training.dataaugmentation static method)": [[5, "super_gradients.training.DataAugmentation.to_tensor"]], "to_tensor() (super_gradients.training.datasets.dataaugmentation static method)": [[5, "super_gradients.training.datasets.DataAugmentation.to_tensor"]], "top_k_predictions (super_gradients.training.metrics.detectionmetrics attribute)": [[5, "super_gradients.training.metrics.DetectionMetrics.top_k_predictions"]], "torch_version_is_greater_or_equal() (in module super_gradients.training.utils)": [[5, "super_gradients.training.utils.torch_version_is_greater_or_equal"]], "total (super_gradients.training.metrics.accuracy attribute)": [[5, "super_gradients.training.metrics.Accuracy.total"]], "train() (super_gradients.training.kdtrainer method)": [[5, "super_gradients.training.KDTrainer.train"]], "train() (super_gradients.training.trainer method)": [[5, "id0"], [5, "super_gradients.training.Trainer.train"]], "train() (super_gradients.training.kd_trainer.kdtrainer method)": [[5, "super_gradients.training.kd_trainer.KDTrainer.train"]], "train() (super_gradients.training.sg_trainer.trainer method)": [[5, "id3"], [5, "super_gradients.training.sg_trainer.Trainer.train"]], "train_from_config() (super_gradients.training.kdtrainer class method)": [[5, "super_gradients.training.KDTrainer.train_from_config"]], "train_from_config() (super_gradients.training.trainer class method)": [[5, "super_gradients.training.Trainer.train_from_config"]], "train_from_config() (super_gradients.training.kd_trainer.kdtrainer class method)": [[5, "super_gradients.training.kd_trainer.KDTrainer.train_from_config"]], "train_from_config() (super_gradients.training.sg_trainer.trainer class method)": [[5, "super_gradients.training.sg_trainer.Trainer.train_from_config"]], "training (super_gradients.training.losses.bcediceloss attribute)": [[5, "super_gradients.training.losses.BCEDiceLoss.training"]], "training (super_gradients.training.losses.yoloxfastdetectionloss attribute)": [[5, "super_gradients.training.losses.YoloXFastDetectionLoss.training"]], "training (super_gradients.training.metrics.binarydice attribute)": [[5, "super_gradients.training.metrics.BinaryDice.training"]], "training (super_gradients.training.metrics.binaryiou attribute)": [[5, "super_gradients.training.metrics.BinaryIOU.training"]], "training (super_gradients.training.utils.wrappedmodel attribute)": [[5, "super_gradients.training.utils.WrappedModel.training"]], "translate (super_gradients.training.transforms.detectionrandomaffine attribute)": [[5, "super_gradients.training.transforms.DetectionRandomAffine.translate"]], "update() (super_gradients.training.metrics.accuracy method)": [[5, "super_gradients.training.metrics.Accuracy.update"]], "update() (super_gradients.training.metrics.detectionmetrics method)": [[5, "super_gradients.training.metrics.DetectionMetrics.update"]], "update() (super_gradients.training.metrics.dice method)": [[5, "super_gradients.training.metrics.Dice.update"]], "update() (super_gradients.training.metrics.iou method)": [[5, "super_gradients.training.metrics.IoU.update"]], "update() (super_gradients.training.metrics.pixelaccuracy method)": [[5, "super_gradients.training.metrics.PixelAccuracy.update"]], "update() (super_gradients.training.metrics.top5 method)": [[5, "super_gradients.training.metrics.Top5.update"]], "update() (super_gradients.training.metrics.toytestclassificationmetric method)": [[5, "super_gradients.training.metrics.ToyTestClassificationMetric.update"]], "use_l1 (super_gradients.training.losses.yoloxdetectionloss attribute)": [[5, "super_gradients.training.losses.YoloXDetectionLoss.use_l1"]], "validate() (super_gradients.training.utils.hpmstruct method)": [[5, "super_gradients.training.utils.HpmStruct.validate"]], "wh_thr (super_gradients.training.transforms.detectionrandomaffine attribute)": [[5, "super_gradients.training.transforms.DetectionRandomAffine.wh_thr"]]}})
Tip!

Press p or to see the previous file or, n or to see the next file

Comments

Loading...