Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

welcome.md.txt 24 KB

You have to be logged in to leave a comment. Sign In
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
  1. <div align="center">
  2. <img src="assets/SG_img/SG - Horizontal Glow 2.png" width="600"/>
  3. <br/><br/>
  4. **Build, train, and fine-tune production-ready deep learning SOTA vision models**
  5. [![Tweet](https://img.shields.io/twitter/url/http/shields.io.svg?style=social)](https://twitter.com/intent/tweet?text=Easily%20train%20or%20fine-tune%20SOTA%20computer%20vision%20models%20from%20one%20training%20repository&url=https://github.com/Deci-AI/super-gradients&via=deci_ai&hashtags=AI,deeplearning,computervision,training,opensource)
  6. #### Version 3 is out! Notebooks have been updated!
  7. ______________________________________________________________________
  8. <p align="center">
  9. <a href="https://www.supergradients.com/">Website</a> •
  10. <a href="https://deci-ai.github.io/super-gradients/user_guide.html#introducing-the-supergradients-library">User Guide</a> •
  11. <a href="https://deci-ai.github.io/super-gradients/super_gradients.common.html">Docs</a> •
  12. <a href="#getting-started">Getting Started</a> •
  13. <a href="#implemented-model-architectures">Pretrained Models</a> •
  14. <a href="#community">Community</a> •
  15. <a href="#license">License</a> •
  16. <a href="#deci-platform">Deci Platform</a>
  17. </p>
  18. <p align="center">
  19. <a href="https://github.com/Deci-AI/super-gradients#prerequisites"><img src="https://img.shields.io/badge/python-3.7%20%7C%203.8%20%7C%203.9-blue" />
  20. <a href="https://github.com/Deci-AI/super-gradients#prerequisites"><img src="https://img.shields.io/badge/pytorch-1.9%20%7C%201.10-blue" />
  21. <a href="https://pypi.org/project/super-gradients/"><img src="https://img.shields.io/pypi/v/super-gradients" />
  22. <a href="https://github.com/Deci-AI/super-gradients#computer-vision-models-pretrained-checkpoints" ><img src="https://img.shields.io/badge/pre--trained%20models-34-brightgreen" />
  23. <a href="https://github.com/Deci-AI/super-gradients/releases"><img src="https://img.shields.io/github/v/release/Deci-AI/super-gradients" />
  24. <a href="https://join.slack.com/t/supergradients-comm52/shared_invite/zt-10vz6o1ia-b_0W5jEPEnuHXm087K~t8Q"><img src="https://img.shields.io/badge/slack-community-blueviolet" />
  25. <a href="https://github.com/Deci-AI/super-gradients/blob/master/LICENSE.md"><img src="https://img.shields.io/badge/license-Apache%202.0-blue" />
  26. <a href="https://deci-ai.github.io/super-gradients/welcome.html"><img src="https://img.shields.io/badge/docs-sphinx-brightgreen" />
  27. </p>
  28. </div>
  29. [](https://deci-ai.github.io/super-gradients/user_guide.html#introducing-the-supergradients-library)
  30. ## Build with SuperGradients
  31. __________________________________________________________________________________________________________
  32. ### Support various computer vision tasks
  33. <div align="center">
  34. <img src="./assets/SG_img/Segmentation 1500x900 .png" width="250px">
  35. <img src="./assets/SG_img/Object detection 1500X900.png" width="250px">
  36. <img src="./assets/SG_img/Classification 1500x900.png" width="250px">
  37. </div>
  38. ### Ready to deploy pre-trained SOTA models
  39. ```python
  40. # Load model with pretrained weights
  41. from super_gradients.common.object_names import Models
  42. from super_gradients.training import models
  43. model = models.get(Models.YOLOX_S, pretrained_weights="coco")
  44. ```
  45. #### Classification
  46. <div align="center">
  47. <img src="./assets/SG_img/Classification@2xDark.png" width="800px">
  48. </div>
  49. #### Semantic Segmentation
  50. <div align="center">
  51. <img src="./assets/SG_img/Semantic Segmentation@2xDark.png" width="800px">
  52. </div>
  53. #### Object Detection
  54. <div align="center">
  55. <img src="./assets/SG_img/Object Detection@2xDark.png" width="800px">
  56. </div>
  57. All Computer Vision Models - Pretrained Checkpoints can be found [here](src/super_gradients/training/Computer_Vision_Models_Pretrained_Checkpoints.md)
  58. ### Easy to train SOTA Models
  59. Easily load and fine-tune production-ready, pre-trained SOTA models that incorporate best practices and validated hyper-parameters for achieving best-in-class accuracy.
  60. For more information on how to do it go to [Getting Started](#getting-started)
  61. ### Plug and play recipes
  62. ```python
  63. python -m super_gradients.train_from_recipe --config-name=imagenet_regnetY architecture=regnetY800 dataset_interface.data_dir=<YOUR_Imagenet_LOCAL_PATH> ckpt_root_dir=<CHEKPOINT_DIRECTORY>
  64. ```
  65. More example on how and why to use recipes can be found in [Recipes](#recipes)
  66. ### Production readiness
  67. All SuperGradients models’ are production ready in the sense that they are compatible with deployment tools such as TensorRT (Nvidia) and OpenVINO (Intel) and can be easily taken into production. With a few lines of code you can easily integrate the models into your codebase.
  68. ```python
  69. # Load model with pretrained weights
  70. from super_gradients.training import models
  71. from super_gradients.common.object_names import Models
  72. model = models.get(Models.YOLOX_S, pretrained_weights="coco")
  73. # Prepare model for conversion
  74. # Input size is in format of [Batch x Channels x Width x Height] where 640 is the standart COCO dataset dimensions
  75. model.eval()
  76. model.prep_model_for_conversion(input_size=[1, 3, 640, 640])
  77. # Create dummy_input
  78. # Convert model to onnx
  79. torch.onnx.export(model, dummy_input, "yolox_s.onnx")
  80. ```
  81. More information on how to take your model to production can be found in [Getting Started](#getting-started) notebooks
  82. ## Quick Installation
  83. __________________________________________________________________________________________________________
  84. ```bash
  85. pip install super-gradients
  86. ```
  87. ## What's New
  88. __________________________________________________________________________________________________________
  89. * 【06/9/2022】 PP-LiteSeg - new pre-trained [checkpoints](src/super_gradients/training/Computer_Vision_Models_Pretrained_Checkpoints.md) for Cityscapes with SOTA mIoU scores (~1.5% above paper)🎯
  90. * 【07/08/2022】DDRNet23 - new pre-trained [checkpoints](src/super_gradients/training/Computer_Vision_Models_Pretrained_Checkpoints.md) and [recipes](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/recipes) for Cityscapes with SOTA mIoU scores (~1% above paper)🎯
  91. * 【27/07/2022】YOLOX models (object detection) - recipes and pre-trained checkpoints.
  92. * 【07/07/2022】SSD Lite MobileNet V2,V1 - Training [recipes](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/recipes/coco_ssd_lite_mobilenet_v2.yaml) and pre-trained [checkpoints](src/super_gradients/training/Computer_Vision_Models_Pretrained_Checkpoints.md) on COCO - Tailored for edge devices! 📱
  93. * 【07/07/2022】 STDC - new pre-trained [checkpoints](src/super_gradients/training/Computer_Vision_Models_Pretrained_Checkpoints.md) and [recipes](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/recipes) for Cityscapes with super SOTA mIoU scores (~2.5% above paper)🎯
  94. Check out SG full [release notes](https://github.com/Deci-AI/super-gradients/releases).
  95. ## Coming soon
  96. __________________________________________________________________________________________________________
  97. - [ ] PP-LiteSeg recipes for Cityscapes with SOTA mIoU scores (~1.5% above paper)🎯
  98. - [ ] Single class detectors (recipes, pre-trained checkpoints) for edge devices deployment.
  99. - [ ] Single class segmentation (recipes, pre-trained checkpoints) for edge devices deployment.
  100. - [ ] QAT capabilities (Quantization Aware Training).
  101. - [ ] Integration with more professional tools.
  102. ## Table of Content
  103. __________________________________________________________________________________________________________
  104. <!-- toc -->
  105. - [Getting Started](#getting-started)
  106. - [Advanced Features](#advanced-features)
  107. - [Installation Methods](#installation-methods)
  108. - [Prerequisites](#prerequisites)
  109. - [Quick Installation](#quick-installation)
  110. - [Implemented Model Architectures](#implemented-model-architectures)
  111. - [Contributing](#contributing)
  112. - [Citation](#citation)
  113. - [Community](#community)
  114. - [License](#license)
  115. - [Deci Platform](#deci-platform)
  116. <!-- tocstop -->
  117. ## Getting Started
  118. __________________________________________________________________________________________________________
  119. ### Start Training with Just 1 Command Line
  120. The most simple and straightforward way to start training SOTA performance models with SuperGradients reproducible recipes. Just define your dataset path and where you want your checkpoints to be saved and you are good to go from your terminal!
  121. ```bash
  122. python -m super_gradients.train_from_recipe --config-name=imagenet_regnetY architecture=regnetY800 dataset_interface.data_dir=<YOUR_Imagenet_LOCAL_PATH> ckpt_root_dir=<CHEKPOINT_DIRECTORY>
  123. ```
  124. ### Quickly Load Pre-Trained Weights for Your Desired Model with SOTA Performance
  125. Want to try our pre-trained models on your machine? Import SuperGradients, initialize your Trainer, and load your desired architecture and pre-trained weights from our [SOTA model zoo](src/super_gradients/training/Computer_Vision_Models_Pretrained_Checkpoints.md)
  126. ```python
  127. # The pretrained_weights argument will load a pre-trained architecture on the provided dataset
  128. import super_gradients
  129. model = models.get("model-name", pretrained_weights="pretrained-model-name")
  130. ```
  131. ### Classification
  132. #### Transfer Learning
  133. <table class="tfo-notebook-buttons" align="left">
  134. <td width="500">
  135. <a target="_blank" href="https://bit.ly/3xzIutb"><img src="./assets/SG_img/colab_logo.png" /> Classification Transfer Learning</a>
  136. </td>
  137. <td width="200">
  138. <a target="_blank" href="https://bit.ly/3xwYEn1"><img src="./assets/SG_img/GitHub_logo.png" /> GitHub source</a>
  139. </td>
  140. </table>
  141. </br></br>
  142. ### Semantic Segmentation
  143. #### Quick Start
  144. <table class="tfo-notebook-buttons" align="left">
  145. <td width="500">
  146. <a target="_blank" href="https://bit.ly/3qKx9m8"><img src="./assets/SG_img/colab_logo.png" /> Segmentation Quick Start</a>
  147. </td>
  148. <td width="200">
  149. <a target="_blank" href="https://bit.ly/3qJjxYq"><img src="./assets/SG_img/GitHub_logo.png" /> GitHub source </a>
  150. </td>
  151. </table>
  152. </br></br>
  153. #### Transfer Learning
  154. <table class="tfo-notebook-buttons" align="left">
  155. <td width="500">
  156. <a target="_blank" href="https://bit.ly/3qKwMbe"><img src="./assets/SG_img/colab_logo.png" /> Segmentation Transfer Learning</a>
  157. </td>
  158. <td width="200">
  159. <a target="_blank" href="https://bit.ly/3ShJlXn"><img src="./assets/SG_img/GitHub_logo.png" /> GitHub source</a>
  160. </td>
  161. </table>
  162. </br></br>
  163. #### How to Connect Custom Dataset
  164. <table class="tfo-notebook-buttons" align="left">
  165. <td width="500">
  166. <a target="_blank" href="https://bit.ly/3QQBVJp"><img src="./assets/SG_img/colab_logo.png" /> Segmentation How to Connect Custom Dataset</a>
  167. </td>
  168. <td width="200">
  169. <a target="_blank" href="https://bit.ly/3Us2WGi"><img src="./assets/SG_img/GitHub_logo.png" /> GitHub source</a>
  170. </td>
  171. </table>
  172. </br></br>
  173. ### Object Detection
  174. #### Transfer Learning
  175. <table class="tfo-notebook-buttons" align="left">
  176. <td width="500">
  177. <a target="_blank" href="https://bit.ly/3SkMohx"><img src="./assets/SG_img/colab_logo.png" /> Detection Transfer Learning</a>
  178. </td>
  179. <td width="200">
  180. <a target="_blank" href="https://bit.ly/3DF8siG"><img src="./assets/SG_img/GitHub_logo.png" /> GitHub source</a>
  181. </td>
  182. </table>
  183. </br></br>
  184. #### How to Connect Custom Dataset
  185. <table class="tfo-notebook-buttons" align="left">
  186. <td width="500">
  187. <a target="_blank" href="https://bit.ly/3dqDlg3"><img src="./assets/SG_img/colab_logo.png" /> Detection How to Connect Custom Dataset</a>
  188. </td>
  189. <td width="200">
  190. <a target="_blank" href="https://bit.ly/3xBlcmq"><img src="./assets/SG_img/GitHub_logo.png" /> GitHub source</a>
  191. </td>
  192. </table>
  193. </br></br>
  194. ### How to Predict Using Pre-trained Model
  195. #### Segmentation, Detection and Classification Prediction
  196. <table class="tfo-notebook-buttons" align="left">
  197. <td width="500">
  198. <a target="_blank" href="https://bit.ly/3f4mssd"><img src="./assets/SG_img/colab_logo.png" /> How to Predict Using Pre-trained Model</a>
  199. </td>
  200. <td width="200">
  201. <a target="_blank" href="https://bit.ly/3Sf59Tr"><img src="./assets/SG_img/GitHub_logo.png" /> GitHub source</a>
  202. </td>
  203. </table>
  204. </br></br>
  205. ## Advanced Features
  206. __________________________________________________________________________________________________________
  207. ### Knowledge Distillation Training
  208. Knowledge Distillation is a training technique that uses a large model, teacher model, to improve the performance of a smaller model, the student model.
  209. Learn more about SuperGradients knowledge distillation training with our pre-trained BEiT base teacher model and Resnet18 student model on CIFAR10 example notebook on Google Colab for an easy to use tutorial using free GPU hardware
  210. <table class="tfo-notebook-buttons" align="left">
  211. <td width="500">
  212. <a target="_blank" href="https://bit.ly/3BLA5oR"><img src="./assets/SG_img/colab_logo.png" /> Knowledge Distillation Training</a>
  213. </td>
  214. <td width="200">
  215. <a target="_blank" href="https://bit.ly/3S9UlG4"><img src="./assets/SG_img/GitHub_logo.png" /> GitHub source</a>
  216. </td>
  217. </table>
  218. </br></br>
  219. ### Recipes
  220. To train a model, it is necessary to configure 4 main components. These components are aggregated into a single "main" recipe `.yaml` file that inherits the aforementioned dataset, architecture, raining and checkpoint params. It is also possible (and recomended for flexibility) to override default settings with custom ones.
  221. All recipes can be found [here](src/super_gradients/recipes/Training_Recipes.md)
  222. <table class="tfo-notebook-buttons" align="left">
  223. <td width="500">
  224. <a target="_blank" href="https://bit.ly/3UiY5ab"><img src="./assets/SG_img/colab_logo.png" /> How to Use Recipes</a>
  225. </td>
  226. <td width="200">
  227. <a target="_blank" href="https://bit.ly/3QSrHbm"><img src="./assets/SG_img/GitHub_logo.png" /> GitHub source</a>
  228. </td>
  229. </table>
  230. </br></br>
  231. ### Using DDP
  232. ```python
  233. from super_gradients import init_trainer
  234. from super_gradients.common import MultiGPUMode
  235. from super_gradients.training.utils.distributed_training_utils import setup_gpu_mode
  236. # Initialize the environment
  237. init_trainer()
  238. # Launch DDP on 1 device (node) of 4 GPU's
  239. setup_gpu_mode(gpu_mode=MultiGPUMode.DISTRIBUTED_DATA_PARALLEL, num_gpus=4)
  240. # Define the objects
  241. # The trainer will run on DDP without anything else to change
  242. ```
  243. ### Easily change architectures parameters
  244. ```python
  245. from super_gradients.training import models
  246. # instantiate default pretrained resnet18
  247. default_resnet18 = models.get(name="resnet18", num_classes=100, pretrained_weights="imagenet")
  248. # instantiate pretrained resnet18, turning DropPath on with probability 0.5
  249. droppath_resnet18 = models.get(name="resnet18", arch_params={"droppath_prob": 0.5}, num_classes=100, pretrained_weights="imagenet")
  250. # instantiate pretrained resnet18, without classifier head. Output will be from the last stage before global pooling
  251. backbone_resnet18 = models.get(name="resnet18", arch_params={"backbone_mode": True}, pretrained_weights="imagenet")
  252. ```
  253. ### Using phase callbacks
  254. ```python
  255. from super_gradients import Trainer
  256. from torch.optim.lr_scheduler import ReduceLROnPlateau
  257. from super_gradients.training.utils.callbacks import Phase, LRSchedulerCallback
  258. from super_gradients.training.metrics.classification_metrics import Accuracy
  259. # define PyTorch train and validation loaders and optimizer
  260. # define what to be called in the callback
  261. rop_lr_scheduler = ReduceLROnPlateau(optimizer, mode="max", patience=10, verbose=True)
  262. # define phase callbacks, they will fire as defined in Phase
  263. phase_callbacks = [LRSchedulerCallback(scheduler=rop_lr_scheduler,
  264. phase=Phase.VALIDATION_EPOCH_END,
  265. metric_name="Accuracy")]
  266. # create a trainer object, look the declaration for more parameters
  267. trainer = Trainer("experiment_name")
  268. # define phase_callbacks as part of the training parameters
  269. train_params = {"phase_callbacks": phase_callbacks}
  270. ```
  271. ### Integration to Weights and Biases
  272. ```python
  273. from super_gradients import Trainer
  274. # create a trainer object, look the declaration for more parameters
  275. trainer = Trainer("experiment_name")
  276. train_params = { ... # training parameters
  277. "sg_logger": "wandb_sg_logger", # Weights&Biases Logger, see class WandBSGLogger for details
  278. "sg_logger_params": # paramenters that will be passes to __init__ of the logger
  279. {
  280. "project_name": "project_name", # W&B project name
  281. "save_checkpoints_remote": True
  282. "save_tensorboard_remote": True
  283. "save_logs_remote": True
  284. }
  285. }
  286. ```
  287. ## Installation Methods
  288. __________________________________________________________________________________________________________
  289. ### Prerequisites
  290. <details>
  291. <summary>General requirements</summary>
  292. - Python 3.7, 3.8 or 3.9 installed.
  293. - torch>=1.9.0
  294. - https://pytorch.org/get-started/locally/
  295. - The python packages that are specified in requirements.txt;
  296. </details>
  297. <details>
  298. <summary>To train on nvidia GPUs</summary>
  299. - [Nvidia CUDA Toolkit >= 11.2](https://developer.nvidia.com/cuda-11.2.0-download-archive?target_os=Linux&target_arch=x86_64&target_distro=Ubuntu)
  300. - CuDNN >= 8.1.x
  301. - Nvidia Driver with CUDA >= 11.2 support (≥460.x)
  302. </details>
  303. ### Quick Installation
  304. <details>
  305. <summary>Install stable version using PyPi</summary>
  306. See in [PyPi](https://pypi.org/project/super-gradients/)
  307. ```bash
  308. pip install super-gradients
  309. ```
  310. That's it !
  311. </details>
  312. <details>
  313. <summary>Install using GitHub</summary>
  314. ```bash
  315. pip install git+https://github.com/Deci-AI/super-gradients.git@stable
  316. ```
  317. </details>
  318. ## Implemented Model Architectures
  319. __________________________________________________________________________________________________________
  320. Detailed list can be found [here](src/super_gradients/training/models/Implemented%20Model%20Architectures.md)
  321. ### Image Classification
  322. - [DensNet (Densely Connected Convolutional Networks)](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/training/models/classification_models/densenet.py)
  323. - [DPN](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/training/models/classification_models/dpn.py)
  324. - [EfficientNet](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/training/models/classification_models/efficientnet.py)
  325. - [LeNet](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/training/models/classification_models/lenet.py)
  326. - [MobileNet](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/training/models/classification_models/mobilenet.py)
  327. - [MobileNet v2](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/training/models/classification_models/mobilenetv2.py)
  328. - [MobileNet v3](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/training/models/classification_models/mobilenetv3.py)
  329. - [PNASNet](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/training/models/classification_models/pnasnet.py)
  330. - [Pre-activation ResNet](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/training/models/classification_models/preact_resnet.py)
  331. - [RegNet](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/training/models/classification_models/regnet.py)
  332. - [RepVGG](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/training/models/classification_models/repvgg.py)
  333. - [ResNet](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/training/models/classification_models/resnet.py)
  334. - [ResNeXt](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/training/models/classification_models/resnext.py)
  335. - [SENet ](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/training/models/classification_models/senet.py)
  336. - [ShuffleNet](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/training/models/classification_models/shufflenet.py)
  337. - [ShuffleNet v2](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/training/models/classification_models/shufflenetv2.py)
  338. - [VGG](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/training/models/classification_models/vgg.py)
  339. ### Semantic Segmentation
  340. - [PP-LiteSeg](https://bit.ly/3RrtMMO)
  341. - [DDRNet (Deep Dual-resolution Networks)](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/training/models/segmentation_models/ddrnet.py)
  342. - [LadderNet](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/training/models/segmentation_models/laddernet.py)
  343. - [RegSeg](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/training/models/segmentation_models/regseg.py)
  344. - [ShelfNet](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/training/models/segmentation_models/shelfnet.py)
  345. - [STDC](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/training/models/segmentation_models/stdc.py)
  346. ### Object Detection
  347. - [CSP DarkNet](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/training/models/detection_models/csp_darknet53.py)
  348. - [DarkNet-53](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/training/models/detection_models/darknet53.py)
  349. - [SSD (Single Shot Detector)](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/training/models/detection_models/ssd.py)
  350. - [YOLOX](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/training/models/detection_models/yolox.py)
  351. __________________________________________________________________________________________________________
  352. ## Documentation
  353. Check SuperGradients [Docs](https://deci-ai.github.io/super-gradients/welcome.html) for full documentation, user guide, and examples.
  354. ## Contributing
  355. To learn about making a contribution to SuperGradients, please see our [Contribution page](CONTRIBUTING.md).
  356. Our awesome contributors:
  357. <a href="https://github.com/Deci-AI/super-gradients/graphs/contributors">
  358. <img src="https://contrib.rocks/image?repo=Deci-AI/super-gradients" />
  359. </a>
  360. <br/>Made with [contrib.rocks](https://contrib.rocks).
  361. ## Citation
  362. If you are using SuperGradients library or benchmarks in your research, please cite SuperGradients deep learning training library.
  363. ## Community
  364. If you want to be a part of SuperGradients growing community, hear about all the exciting news and updates, need help, request for advanced features,
  365. or want to file a bug or issue report, we would love to welcome you aboard!
  366. * Slack is the place to be and ask questions about SuperGradients and get support. [Click here to join our Slack](
  367. https://join.slack.com/t/supergradients-comm52/shared_invite/zt-10vz6o1ia-b_0W5jEPEnuHXm087K~t8Q)
  368. * To report a bug, [file an issue](https://github.com/Deci-AI/super-gradients/issues) on GitHub.
  369. * Join the [SG Newsletter](https://www.supergradients.com/#Newsletter)
  370. for staying up to date with new features and models, important announcements, and upcoming events.
  371. * For a short meeting with us, use this [link](https://calendly.com/ofer-baratz-deci/15min) and choose your preferred time.
  372. ## License
  373. This project is released under the [Apache 2.0 license](LICENSE).
  374. __________________________________________________________________________________________________________
  375. ## Deci Platform
  376. Deci Platform is our end to end platform for building, optimizing and deploying deep learning models to production.
  377. [Request free trial](https://bit.ly/3qO3icq) to enjoy immediate improvement in throughput, latency, memory footprint and model size.
  378. Features:
  379. - Automatically compile and quantize your models with just a few clicks (TensorRT, OpenVINO).
  380. - Gain up to 10X improvement in throughput, latency, memory and model size.
  381. - Easily benchmark your models’ performance on different hardware and batch sizes.
  382. - Invite co-workers to collaborate on models and communicate your progress.
  383. - Deci supports all common frameworks and Hardware, from Intel CPUs to Nvidia's GPUs and Jetsons.
  384. ֿ
  385. Request free trial [here](https://bit.ly/3qO3icq)
Tip!

Press p or to see the previous file or, n or to see the next file

Comments

Loading...