Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

deci_lab_export_test.py 3.1 KB

You have to be logged in to leave a comment. Sign In
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
  1. import unittest
  2. from super_gradients import SgModel, ClassificationTestDatasetInterface
  3. from super_gradients.training.metrics import Accuracy, Top5
  4. from super_gradients.training.models import ResNet18
  5. from torch.optim import SGD
  6. from super_gradients.training.utils.callbacks import DeciLabUploadCallback, ModelConversionCheckCallback
  7. from deci_lab_client.models import Metric, QuantizationLevel, ModelMetadata, OptimizationRequestForm
  8. from deci_lab_client.client import DeciPlatformClient
  9. platform_client = DeciPlatformClient()
  10. class DeciLabUploadTest(unittest.TestCase):
  11. def setUp(self) -> None:
  12. self.model = SgModel("deci_lab_export_test_model", model_checkpoints_location="local")
  13. dataset = ClassificationTestDatasetInterface(dataset_params={"batch_size": 10})
  14. self.model.connect_dataset_interface(dataset)
  15. net = ResNet18(num_classes=5, arch_params={})
  16. self.optimizer = SGD(params=net.parameters(), lr=0.1)
  17. self.model.build_model(net)
  18. def test_train_with_deci_lab_integration(self):
  19. model_meta_data = ModelMetadata(
  20. name="model_for_deci_lab_upload_test",
  21. primary_batch_size=1,
  22. architecture="Resnet18",
  23. framework="pytorch",
  24. dl_task="classification",
  25. input_dimensions=(3, 224, 224),
  26. primary_hardware="XEON",
  27. dataset_name="imagenet",
  28. description="ResNet18 ONNX deci.ai Test",
  29. tags=["imagenet", "resnet18"],
  30. )
  31. optimization_request_form = OptimizationRequestForm(
  32. target_hardware="XEON",
  33. target_batch_size=1,
  34. target_metric=Metric.LATENCY,
  35. optimize_model_size=True,
  36. quantization_level=QuantizationLevel.FP16,
  37. optimize_autonac=True,
  38. )
  39. model_conversion_callback = ModelConversionCheckCallback(model_meta_data=model_meta_data)
  40. deci_lab_callback = DeciLabUploadCallback(
  41. email="trainer-tester@testcase.ai",
  42. model_meta_data=model_meta_data,
  43. optimization_request_form=optimization_request_form,
  44. )
  45. train_params = {
  46. "max_epochs": 2,
  47. "lr_updates": [1],
  48. "lr_decay_factor": 0.1,
  49. "lr_mode": "step",
  50. "lr_warmup_epochs": 0,
  51. "initial_lr": 0.1,
  52. "loss": "cross_entropy",
  53. "optimizer": self.optimizer,
  54. "criterion_params": {},
  55. "train_metrics_list": [Accuracy(), Top5()],
  56. "valid_metrics_list": [Accuracy(), Top5()],
  57. "loss_logging_items_names": ["Loss"],
  58. "metric_to_watch": "Accuracy",
  59. "greater_metric_to_watch_is_better": True,
  60. "phase_callbacks": [model_conversion_callback, deci_lab_callback],
  61. }
  62. self.model.train(train_params)
  63. # CLEANUP
  64. new_model_from_repo_name = model_meta_data.name + "_1_1"
  65. model = platform_client.get_model_by_name(name=new_model_from_repo_name).data
  66. platform_client.delete_model(model_id=model.model_id)
  67. if __name__ == "__main__":
  68. unittest.main()
Tip!

Press p or to see the previous file or, n or to see the next file

Comments

Loading...