1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
|
- import unittest
- from torchvision.transforms import Normalize, ToTensor, RandomHorizontalFlip, RandomCrop
- from super_gradients import Trainer
- from super_gradients.training import modify_params_for_qat
- from super_gradients.training.dataloaders.dataloaders import cifar10_train, cifar10_val
- from super_gradients.training.metrics import Accuracy, Top5
- from super_gradients.training.models import ResNet18
- class CodedQATLuanchTest(unittest.TestCase):
- def test_qat_launch(self):
- trainer = Trainer("test_launch_qat_with_minimal_changes")
- net = ResNet18(num_classes=10, arch_params={})
- train_params = {
- "max_epochs": 10,
- "lr_decay_factor": 0.1,
- "lr_warmup_epochs": 0,
- "initial_lr": 0.1,
- "loss": "CrossEntropyLoss",
- "optimizer": "SGD",
- "criterion_params": {},
- "optimizer_params": {"weight_decay": 1e-4, "momentum": 0.9},
- "train_metrics_list": [Accuracy(), Top5()],
- "valid_metrics_list": [Accuracy(), Top5()],
- "metric_to_watch": "Accuracy",
- "greater_metric_to_watch_is_better": True,
- "ema": True,
- }
- train_dataset_params = {
- "transforms": [
- RandomCrop(size=32, padding=4),
- RandomHorizontalFlip(),
- ToTensor(),
- Normalize(mean=[0.4914, 0.4822, 0.4465], std=[0.2023, 0.1994, 0.2010]),
- ]
- }
- train_dataloader_params = {"batch_size": 256}
- val_dataset_params = {"transforms": [ToTensor(), Normalize(mean=[0.4914, 0.4822, 0.4465], std=[0.2023, 0.1994, 0.2010])]}
- val_dataloader_params = {"batch_size": 256}
- train_loader = cifar10_train(dataset_params=train_dataset_params, dataloader_params=train_dataloader_params)
- valid_loader = cifar10_val(dataset_params=val_dataset_params, dataloader_params=val_dataloader_params)
- trainer.train(
- model=net,
- training_params=train_params,
- train_loader=train_loader,
- valid_loader=valid_loader,
- )
- train_params, train_dataset_params, val_dataset_params, train_dataloader_params, val_dataloader_params = modify_params_for_qat(
- train_params, train_dataset_params, val_dataset_params, train_dataloader_params, val_dataloader_params
- )
- train_loader = cifar10_train(dataset_params=train_dataset_params, dataloader_params=train_dataloader_params)
- valid_loader = cifar10_val(dataset_params=val_dataset_params, dataloader_params=val_dataloader_params)
- trainer.qat(
- model=net,
- training_params=train_params,
- train_loader=train_loader,
- valid_loader=valid_loader,
- calib_loader=train_loader,
- )
- def test_ptq_launch(self):
- trainer = Trainer("test_launch_ptq_with_minimal_changes")
- net = ResNet18(num_classes=10, arch_params={})
- train_params = {
- "max_epochs": 10,
- "lr_decay_factor": 0.1,
- "lr_warmup_epochs": 0,
- "initial_lr": 0.1,
- "loss": "CrossEntropyLoss",
- "optimizer": "SGD",
- "criterion_params": {},
- "optimizer_params": {"weight_decay": 1e-4, "momentum": 0.9},
- "train_metrics_list": [Accuracy(), Top5()],
- "valid_metrics_list": [Accuracy(), Top5()],
- "metric_to_watch": "Accuracy",
- "greater_metric_to_watch_is_better": True,
- "ema": True,
- }
- train_dataset_params = {
- "transforms": [
- RandomCrop(size=32, padding=4),
- RandomHorizontalFlip(),
- ToTensor(),
- Normalize(mean=[0.4914, 0.4822, 0.4465], std=[0.2023, 0.1994, 0.2010]),
- ]
- }
- train_dataloader_params = {"batch_size": 256}
- val_dataset_params = {"transforms": [ToTensor(), Normalize(mean=[0.4914, 0.4822, 0.4465], std=[0.2023, 0.1994, 0.2010])]}
- val_dataloader_params = {"batch_size": 256}
- train_loader = cifar10_train(dataset_params=train_dataset_params, dataloader_params=train_dataloader_params)
- valid_loader = cifar10_val(dataset_params=val_dataset_params, dataloader_params=val_dataloader_params)
- trainer.train(
- model=net,
- training_params=train_params,
- train_loader=train_loader,
- valid_loader=valid_loader,
- )
- train_params, train_dataset_params, val_dataset_params, train_dataloader_params, val_dataloader_params = modify_params_for_qat(
- train_params, train_dataset_params, val_dataset_params, train_dataloader_params, val_dataloader_params
- )
- train_loader = cifar10_train(dataset_params=train_dataset_params, dataloader_params=train_dataloader_params)
- valid_loader = cifar10_val(dataset_params=val_dataset_params, dataloader_params=val_dataloader_params)
- trainer.ptq(model=net, valid_loader=valid_loader, calib_loader=train_loader, valid_metrics_list=train_params["valid_metrics_list"])
- if __name__ == "__main__":
- unittest.main()
|