Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

GitHub comments could not be loaded

Makefile 3.9 KB

You have to be logged in to leave a comment. Sign In
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
  1. unit_tests:
  2. python -m unittest tests/deci_core_unit_test_suite_runner.py
  3. integration_tests:
  4. python -m unittest tests/deci_core_integration_test_suite_runner.py
  5. yolo_nas_integration_tests:
  6. python -m unittest tests/integration_tests/yolo_nas_integration_test.py
  7. recipe_accuracy_tests:
  8. python src/super_gradients/train_from_recipe.py --config-name=coco2017_pose_dekr_w32_no_dc experiment_name=shortened_coco2017_pose_dekr_w32_ap_test epochs=1 batch_size=4 val_batch_size=8 training_hyperparams.lr_warmup_steps=0 training_hyperparams.average_best_models=False training_hyperparams.max_train_batches=1000 training_hyperparams.max_valid_batches=100 multi_gpu=DDP num_gpus=4
  9. python src/super_gradients/train_from_recipe.py --config-name=cifar10_resnet experiment_name=shortened_cifar10_resnet_accuracy_test epochs=100 training_hyperparams.average_best_models=False multi_gpu=DDP num_gpus=4
  10. python src/super_gradients/train_from_recipe.py --config-name=coco2017_yolox experiment_name=shortened_coco2017_yolox_n_map_test epochs=10 architecture=yolox_n training_hyperparams.loss=YoloXFastDetectionLoss training_hyperparams.average_best_models=False multi_gpu=DDP num_gpus=4
  11. python src/super_gradients/train_from_recipe.py --config-name=cityscapes_regseg48 experiment_name=shortened_cityscapes_regseg48_iou_test epochs=10 training_hyperparams.average_best_models=False multi_gpu=DDP num_gpus=4
  12. python src/super_gradients/examples/convert_recipe_example/convert_recipe_example.py --config-name=cifar10_conversion_params experiment_name=shortened_cifar10_resnet_accuracy_test
  13. coverage run --source=super_gradients -m unittest tests/deci_core_recipe_test_suite_runner.py
  14. sweeper_test:
  15. python -m super_gradients.train_from_recipe -m --config-name=cifar10_resnet \
  16. ckpt_root_dir=$$PWD \
  17. experiment_name=sweep_cifar10 \
  18. training_hyperparams.max_epochs=1 \
  19. training_hyperparams.initial_lr=0.001,0.01
  20. # Make sure that experiment_dir includes $$expected_num_dir subdirectories. If not, fail
  21. subdir_count=$$(find "$$PWD/sweep_cifar10" -mindepth 1 -maxdepth 1 -type d | wc -l); \
  22. if [ "$$subdir_count" -ne 2 ]; then \
  23. echo "Error: $$PWD/sweep_cifar10 should include 2 subdirectories but includes $$subdir_count."; \
  24. exit 1; \
  25. fi
  26. # Here you define a list of notebooks we want to execute and convert to markdown files
  27. NOTEBOOKS_TO_RUN := src/super_gradients/examples/model_export/models_export.ipynb
  28. NOTEBOOKS_TO_RUN += src/super_gradients/examples/model_export/models_export_pose.ipynb
  29. NOTEBOOKS_TO_RUN += notebooks/what_are_recipes_and_how_to_use.ipynb
  30. NOTEBOOKS_TO_RUN += notebooks/transfer_learning_classification.ipynb
  31. NOTEBOOKS_TO_RUN += notebooks/how_to_use_knowledge_distillation_for_classification.ipynb
  32. NOTEBOOKS_TO_RUN += notebooks/detection_how_to_connect_custom_dataset.ipynb
  33. NOTEBOOKS_TO_RUN += notebooks/PTQ_and_QAT_for_classification.ipynb
  34. NOTEBOOKS_TO_RUN += notebooks/quickstart_segmentation.ipynb
  35. NOTEBOOKS_TO_RUN += notebooks/segmentation_connect_custom_dataset.ipynb
  36. NOTEBOOKS_TO_RUN += notebooks/transfer_learning_semantic_segmentation.ipynb
  37. NOTEBOOKS_TO_RUN += notebooks/yolo_nas_custom_dataset_fine_tuning_with_qat.ipynb
  38. # If there are additional notebooks that must not be executed, but still should be checked for version match, add them here
  39. NOTEBOOKS_TO_CHECK := $(NOTEBOOKS_TO_RUN)
  40. NOTEBOOKS_TO_CHECK += notebooks/yolo_nas_pose_eval_with_pycocotools.ipynb
  41. NOTEBOOKS_TO_CHECK += notebooks/dataloader_adapter.ipynb
  42. # This Makefile target runs notebooks listed below and converts them to markdown files in documentation/source/
  43. run_and_convert_notebooks_to_docs: $(NOTEBOOKS_TO_RUN)
  44. jupyter nbconvert --to markdown --output-dir="documentation/source/" --execute $^
  45. # This Makefile target runs notebooks listed below and converts them to markdown files in documentation/source/
  46. check_notebooks_version_match: $(NOTEBOOKS_TO_CHECK)
  47. python tests/verify_notebook_version.py $^
Tip!

Press p or to see the previous file or, n or to see the next file

Comments

Loading...