1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
|
- import unittest
- import torch
- from super_gradients import Trainer
- from super_gradients.common.object_names import Models
- from super_gradients.training import models
- from super_gradients.training.dataloaders.dataloaders import classification_test_dataloader
- from torchmetrics import Metric
- from super_gradients.training.utils.callbacks import Phase
- class DummyMetric(Metric):
- def update(self, *args, **kwargs) -> None:
- pass
- def compute(self):
- return 1
- class TrainWithTorchSchedulerTest(unittest.TestCase):
- def _run_scheduler_test(self, scheduler_name, scheduler_params, expected_lr, epochs=2, test_resume=False):
- trainer = Trainer("test_" + scheduler_name + "_torch_scheduler")
- dataloader = classification_test_dataloader(batch_size=10)
- model = models.get(Models.RESNET18, num_classes=5)
- train_params = {
- "max_epochs": epochs,
- "lr_mode": {scheduler_name: scheduler_params},
- "lr_warmup_epochs": 0,
- "initial_lr": 0.1,
- "loss": torch.nn.CrossEntropyLoss(),
- "optimizer": "SGD",
- "criterion_params": {},
- "optimizer_params": {"weight_decay": 1e-4, "momentum": 0.9},
- "train_metrics_list": [DummyMetric()],
- "valid_metrics_list": [DummyMetric()],
- "metric_to_watch": "DummyMetric",
- "greater_metric_to_watch_is_better": True,
- }
- trainer.train(model=model, training_params=train_params, train_loader=dataloader, valid_loader=dataloader)
- if test_resume:
- train_params["max_epochs"] = epochs + 1
- train_params["resume"] = True
- trainer.train(model=model, training_params=train_params, train_loader=dataloader, valid_loader=dataloader)
- self.assertAlmostEqual(expected_lr, trainer.optimizer.param_groups[0]["lr"], delta=1e-8)
- def test_train_with_StepLR_torch_scheduler(self):
- scheduler_params = {"gamma": 0.1, "step_size": 1, "phase": Phase.TRAIN_EPOCH_END}
- self._run_scheduler_test("StepLR", scheduler_params, 0.001)
- def test_train_with_LambdaLR_torch_scheduler(self):
- def lr_compute_fn(epoch):
- return 1 / (epoch + 10)
- scheduler_params = {"lr_lambda": lr_compute_fn, "phase": Phase.TRAIN_EPOCH_END}
- self._run_scheduler_test("LambdaLR", scheduler_params, 0.1 / 12)
- def test_train_with_MultiStepLR_torch_scheduler(self):
- scheduler_params = {"milestones": [0, 1], "phase": Phase.TRAIN_EPOCH_END}
- self._run_scheduler_test("MultiStepLR", scheduler_params, 0.001)
- def test_train_with_ConstantLR_torch_scheduler(self):
- scheduler_params = {"factor": 0.5, "total_iters": 4, "phase": Phase.TRAIN_EPOCH_END}
- self._run_scheduler_test("ConstantLR", scheduler_params, 0.05)
- def test_train_with_CosineAnnealingLR_torch_scheduler(self):
- scheduler_params = {"T_max": 3, "phase": Phase.TRAIN_EPOCH_END}
- self._run_scheduler_test("CosineAnnealingLR", scheduler_params, 0.025)
- def test_train_with_CosineAnnealingWarmRestarts_torch_scheduler(self):
- scheduler_params = {"T_0": 2, "phase": Phase.TRAIN_EPOCH_END}
- self._run_scheduler_test("CosineAnnealingWarmRestarts", scheduler_params, 0.1, 4)
- def test_train_with_CyclicLR_torch_scheduler(self):
- scheduler_params = {"base_lr": 0.01, "max_lr": 0.1, "phase": Phase.TRAIN_EPOCH_END}
- self._run_scheduler_test("CyclicLR", scheduler_params, 0.01018, 4)
- def test_train_with_ExponentialLR_torch_scheduler(self):
- scheduler_params = {"gamma": 0.01, "phase": Phase.TRAIN_EPOCH_END}
- self._run_scheduler_test("ExponentialLR", scheduler_params, 1e-09, 4)
- def test_train_with_LinearLR_torch_scheduler(self):
- scheduler_params = {"phase": Phase.TRAIN_EPOCH_END}
- self._run_scheduler_test("LinearLR", scheduler_params, 0.08666666666666668, 4)
- def test_train_with_ReduceLROnPlateau_torch_scheduler(self):
- scheduler_params = {"patience": 0, "phase": Phase.TRAIN_EPOCH_END, "metric_name": "DummyMetric"}
- self._run_scheduler_test("ReduceLROnPlateau", scheduler_params, 0.01)
- def test_resume_train_with_torch_scheduler(self):
- scheduler_params = {"gamma": 0.1, "step_size": 1, "phase": Phase.TRAIN_EPOCH_END}
- self._run_scheduler_test("StepLR", scheduler_params, 0.0001, 2, True)
- def test_resume_train_with_ReduceLROnPlateau_torch_scheduler(self):
- scheduler_params = {"patience": 0, "phase": Phase.TRAIN_EPOCH_END, "metric_name": "DummyMetric"}
- self._run_scheduler_test("ReduceLROnPlateau", scheduler_params, 0.001, 2, True)
- if __name__ == "__main__":
- unittest.main()
|