Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

preprocessing_unit_test.py 10.0 KB

You have to be logged in to leave a comment. Sign In
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
  1. import os
  2. import unittest
  3. from pathlib import Path
  4. import numpy as np
  5. import torch
  6. from super_gradients import Trainer
  7. from super_gradients.common.factories.list_factory import ListFactory
  8. from super_gradients.common.factories.processing_factory import ProcessingFactory
  9. from super_gradients.module_interfaces import HasPreprocessingParams
  10. from super_gradients.training import dataloaders
  11. from super_gradients.training import models
  12. from super_gradients.training.datasets import COCODetectionDataset
  13. from super_gradients.training.metrics import DetectionMetrics
  14. from super_gradients.training.models import YoloXPostPredictionCallback
  15. from super_gradients.training.processing import (
  16. ReverseImageChannels,
  17. DetectionLongestMaxSizeRescale,
  18. DetectionBottomRightPadding,
  19. ImagePermute,
  20. ComposeProcessing,
  21. )
  22. from super_gradients.training.transforms import DetectionPaddedRescale, DetectionRGB2BGR
  23. from super_gradients.training.utils.detection_utils import DetectionCollateFN, CrowdDetectionCollateFN
  24. class PreprocessingUnitTest(unittest.TestCase):
  25. def setUp(self) -> None:
  26. self.mini_coco_data_dir = str(Path(__file__).parent.parent / "data" / "tinycoco")
  27. def test_getting_preprocessing_params(self):
  28. expected_image_processor = {
  29. "ComposeProcessing": {
  30. "processings": [
  31. "ReverseImageChannels",
  32. {"DetectionLongestMaxSizeRescale": {"output_shape": (512, 512)}},
  33. {"DetectionLongestMaxSizeRescale": {"output_shape": (512, 512)}},
  34. {"DetectionBottomRightPadding": {"output_shape": (512, 512), "pad_value": 114}},
  35. {"ImagePermute": {"permutation": (2, 0, 1)}},
  36. ]
  37. }
  38. }
  39. train_dataset_params = {
  40. "data_dir": self.mini_coco_data_dir,
  41. "subdir": "images/train2017",
  42. "json_file": "instances_train2017.json",
  43. "cache": False,
  44. "input_dim": [512, 512],
  45. "transforms": [
  46. {"DetectionPaddedRescale": {"input_dim": [512, 512]}},
  47. {"DetectionTargetsFormatTransform": {"input_dim": [512, 512], "output_format": "LABEL_CXCYWH"}},
  48. ],
  49. }
  50. dataset = COCODetectionDataset(**train_dataset_params)
  51. preprocessing_params = dataset.get_dataset_preprocessing_params()
  52. self.assertEqual(len(preprocessing_params["class_names"]), 80)
  53. self.assertEqual(preprocessing_params["image_processor"], expected_image_processor)
  54. self.assertEqual(preprocessing_params["iou"], 0.65)
  55. self.assertEqual(preprocessing_params["conf"], 0.5)
  56. def test_setting_preprocessing_params_from_validation_set(self):
  57. train_dataset_params = {
  58. "data_dir": self.mini_coco_data_dir,
  59. "subdir": "images/train2017",
  60. "json_file": "instances_train2017.json",
  61. "cache": False,
  62. "input_dim": [329, 320],
  63. "transforms": [
  64. {"DetectionPaddedRescale": {"input_dim": [512, 512]}},
  65. {"DetectionTargetsFormatTransform": {"input_dim": [512, 512], "output_format": "LABEL_CXCYWH"}},
  66. ],
  67. "with_crowd": False,
  68. }
  69. val_dataset_params = {
  70. "data_dir": self.mini_coco_data_dir,
  71. "subdir": "images/val2017",
  72. "json_file": "instances_val2017.json",
  73. "cache": False,
  74. "input_dim": [329, 320],
  75. "transforms": [
  76. {"DetectionPaddedRescale": {"input_dim": [512, 512]}},
  77. {"DetectionTargetsFormatTransform": {"input_dim": [512, 512], "output_format": "LABEL_CXCYWH"}},
  78. ],
  79. }
  80. trainset = COCODetectionDataset(**train_dataset_params)
  81. self.assertIsInstance(trainset, HasPreprocessingParams)
  82. train_loader = dataloaders.get(dataset=trainset, dataloader_params={"collate_fn": DetectionCollateFN(), "num_workers": 0})
  83. valset = COCODetectionDataset(**val_dataset_params)
  84. self.assertIsInstance(valset, HasPreprocessingParams)
  85. valid_loader = dataloaders.get(dataset=valset, dataloader_params={"collate_fn": CrowdDetectionCollateFN(), "num_workers": 0})
  86. trainer = Trainer("test_setting_preprocessing_params_from_validation_set")
  87. detection_train_params_yolox = {
  88. "max_epochs": 1,
  89. "lr_mode": "cosine",
  90. "cosine_final_lr_ratio": 0.05,
  91. "warmup_bias_lr": 0.0,
  92. "warmup_momentum": 0.9,
  93. "initial_lr": 0.02,
  94. "loss": "yolox_loss",
  95. "criterion_params": {"strides": [8, 16, 32], "num_classes": 80}, # output strides of all yolo outputs
  96. "train_metrics_list": [],
  97. "valid_metrics_list": [DetectionMetrics(post_prediction_callback=YoloXPostPredictionCallback(), normalize_targets=True, num_cls=80)],
  98. "metric_to_watch": "mAP@0.50:0.95",
  99. "greater_metric_to_watch_is_better": True,
  100. "average_best_models": False,
  101. }
  102. model = models.get("yolox_s", num_classes=80)
  103. trainer.train(model=model, training_params=detection_train_params_yolox, train_loader=train_loader, valid_loader=valid_loader)
  104. processing_list = model._image_processor.processings
  105. self.assertTrue(isinstance(processing_list[0], ReverseImageChannels))
  106. self.assertTrue(isinstance(processing_list[1], DetectionLongestMaxSizeRescale))
  107. self.assertTrue(isinstance(processing_list[2], DetectionLongestMaxSizeRescale))
  108. self.assertTrue(isinstance(processing_list[3], DetectionBottomRightPadding))
  109. self.assertTrue(isinstance(processing_list[4], ImagePermute))
  110. self.assertTrue(len(processing_list), 5)
  111. self.assertEqual(model._default_nms_iou, 0.65)
  112. self.assertEqual(model._default_nms_conf, 0.5)
  113. checkpoint_path = os.path.join(trainer.checkpoints_dir_path, "ckpt_best.pth")
  114. checkpoint = torch.load(checkpoint_path, map_location="cpu")
  115. self.assertTrue("processing_params" in checkpoint)
  116. def test_setting_preprocessing_params_from_checkpoint(self):
  117. model = models.get("yolox_s", num_classes=80)
  118. self.assertTrue(model._image_processor is None)
  119. self.assertTrue(model._default_nms_iou is None)
  120. self.assertTrue(model._default_nms_conf is None)
  121. self.assertTrue(model._class_names is None)
  122. train_dataset_params = {
  123. "data_dir": self.mini_coco_data_dir,
  124. "subdir": "images/train2017",
  125. "json_file": "instances_train2017.json",
  126. "cache": False,
  127. "input_dim": [329, 320],
  128. "transforms": [
  129. {"DetectionPaddedRescale": {"input_dim": [512, 512]}},
  130. {"DetectionTargetsFormatTransform": {"input_dim": [512, 512], "output_format": "LABEL_CXCYWH"}},
  131. ],
  132. "with_crowd": False,
  133. }
  134. val_dataset_params = {
  135. "data_dir": self.mini_coco_data_dir,
  136. "subdir": "images/val2017",
  137. "json_file": "instances_val2017.json",
  138. "cache": False,
  139. "input_dim": [329, 320],
  140. "transforms": [
  141. {"DetectionPaddedRescale": {"input_dim": [512, 512]}},
  142. {"DetectionTargetsFormatTransform": {"input_dim": [512, 512], "output_format": "LABEL_CXCYWH"}},
  143. ],
  144. }
  145. trainset = COCODetectionDataset(**train_dataset_params)
  146. train_loader = dataloaders.get(dataset=trainset, dataloader_params={"collate_fn": DetectionCollateFN()})
  147. valset = COCODetectionDataset(**val_dataset_params)
  148. valid_loader = dataloaders.get(dataset=valset, dataloader_params={"collate_fn": CrowdDetectionCollateFN()})
  149. trainer = Trainer("save_ckpt_for")
  150. detection_train_params_yolox = {
  151. "max_epochs": 1,
  152. "lr_mode": "cosine",
  153. "cosine_final_lr_ratio": 0.05,
  154. "warmup_bias_lr": 0.0,
  155. "warmup_momentum": 0.9,
  156. "initial_lr": 0.02,
  157. "loss": "yolox_loss",
  158. "criterion_params": {"strides": [8, 16, 32], "num_classes": 80}, # output strides of all yolo outputs
  159. "train_metrics_list": [],
  160. "valid_metrics_list": [DetectionMetrics(post_prediction_callback=YoloXPostPredictionCallback(), normalize_targets=True, num_cls=80)],
  161. "metric_to_watch": "mAP@0.50:0.95",
  162. "greater_metric_to_watch_is_better": True,
  163. "average_best_models": False,
  164. }
  165. trainer.train(model=model, training_params=detection_train_params_yolox, train_loader=train_loader, valid_loader=valid_loader)
  166. model = models.get("yolox_s", num_classes=80, checkpoint_path=os.path.join(trainer.checkpoints_dir_path, "ckpt_best.pth"))
  167. processing_list = model._image_processor.processings
  168. self.assertTrue(isinstance(processing_list[0], ReverseImageChannels))
  169. self.assertTrue(isinstance(processing_list[1], DetectionLongestMaxSizeRescale))
  170. self.assertTrue(isinstance(processing_list[2], DetectionLongestMaxSizeRescale))
  171. self.assertTrue(isinstance(processing_list[3], DetectionBottomRightPadding))
  172. self.assertTrue(isinstance(processing_list[4], ImagePermute))
  173. self.assertTrue(len(processing_list), 5)
  174. self.assertEqual(model._default_nms_iou, 0.65)
  175. self.assertEqual(model._default_nms_conf, 0.5)
  176. checkpoint_path = os.path.join(trainer.checkpoints_dir_path, "ckpt_best.pth")
  177. checkpoint = torch.load(checkpoint_path, map_location="cpu")
  178. self.assertTrue("processing_params" in checkpoint)
  179. def test_processings_from_dataset_params(self):
  180. transforms = [DetectionRGB2BGR(prob=1), DetectionPaddedRescale(input_dim=(512, 512))]
  181. processings = []
  182. for t in transforms:
  183. processings += t.get_equivalent_preprocessing()
  184. instantiated_processing = ListFactory(ProcessingFactory()).get(processings)
  185. processing_pipeline = ComposeProcessing(instantiated_processing)
  186. result = processing_pipeline.preprocess_image(np.zeros((480, 640, 3)))
  187. print(result)
  188. if __name__ == "__main__":
  189. unittest.main()
Tip!

Press p or to see the previous file or, n or to see the next file

Comments

Loading...