1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
|
- import os
- import tempfile
- import unittest
- import numpy as np
- import torch.cuda
- from super_gradients.common.object_names import Models
- from super_gradients.training import utils as core_utils, models
- from super_gradients.training.dataloaders.dataloaders import coco2017_val
- from super_gradients.training.datasets.datasets_conf import COCO_DETECTION_CLASSES_LIST
- from super_gradients.training.datasets.pose_estimation_datasets.yolo_nas_pose_collate_fn import flat_collate_tensors_with_batch_index
- from super_gradients.training.metrics import DetectionMetrics, DetectionMetrics_050
- from super_gradients.training.models.detection_models.yolo_base import YoloXPostPredictionCallback
- from super_gradients.training.utils.detection_utils import DetectionVisualization, DetectionPostPredictionCallback, xyxy2cxcywh
- from tests.core_test_utils import is_data_available
- class TestDetectionUtils(unittest.TestCase):
- def setUp(self):
- self.device = "cuda" if torch.cuda.is_available() else "cpu"
- self.model = models.get(Models.YOLOX_N, pretrained_weights="coco").to(self.device)
- self.model.eval()
- def test_detection_metric_with_calc_best_score_thresholds(self):
- class DummyCallback(DetectionPostPredictionCallback):
- def forward(self, p, device=None):
- return p
- class_names = ["A", "B", "C"]
- num_classes = len(class_names)
- metric = DetectionMetrics(
- num_cls=num_classes,
- post_prediction_callback=DummyCallback(),
- normalize_targets=True,
- calc_best_score_thresholds=True,
- include_classwise_ap=True,
- class_names=class_names,
- )
- # x1, y1, x2, y2, confidence, class_label
- num_predictions = 100
- num_targets = 64
- preds = torch.cat(
- [
- torch.randint(0, 100, (num_predictions, 2)), # [x1,y1]
- torch.randint(100, 200, (num_predictions, 2)), # [x2,y2]
- torch.randn((num_predictions, 1)).sigmoid(),
- torch.randint(0, num_classes, (num_predictions, 1)), # [x2,y2]
- ],
- dim=-1,
- ).float()
- targets = torch.cat(
- [
- torch.randint(0, num_classes, (num_targets, 1)), # [x2,y2]
- torch.randint(0, 100, (num_targets, 2)), # [x1,y1]
- torch.randint(100, 200, (num_targets, 2)), # [x2,y2]
- ],
- dim=-1,
- ).float()
- targets[:, 1:] = xyxy2cxcywh(targets[:, 1:])
- targets_flat = flat_collate_tensors_with_batch_index([targets])
- metric(preds=[preds], target=targets_flat, device="cpu", inputs=torch.zeros((1, 3, 640, 640)))
- metric_values = metric.compute()
- self.assertTrue("Best_score_threshold" in metric_values)
- for metric_value_name in metric.best_threshold_per_class_names:
- self.assertTrue(metric_value_name in metric_values)
- @unittest.skipIf(not is_data_available(), "run only when /data is available")
- def test_visualization(self):
- with tempfile.TemporaryDirectory() as tmpdirname:
- valid_loader = coco2017_val(dataloader_params={"batch_size": 16, "num_workers": 0})
- post_prediction_callback = YoloXPostPredictionCallback()
- # Simulate one iteration of validation subset
- batch_i, batch = 0, next(iter(valid_loader))
- imgs, targets = batch[:2]
- imgs = core_utils.tensor_container_to_device(imgs, self.device)
- targets = core_utils.tensor_container_to_device(targets, self.device)
- output = self.model(imgs)
- output = post_prediction_callback(output)
- # Visualize the batch
- DetectionVisualization.visualize_batch(imgs, output, targets, batch_i, COCO_DETECTION_CLASSES_LIST, tmpdirname)
- # Assert images ware created and delete them
- img_name = "{}/{}_{}.jpg"
- for i in range(4):
- img_path = img_name.format(tmpdirname, batch_i, i)
- self.assertTrue(os.path.exists(img_path))
- os.remove(img_path)
- @unittest.skipIf(not is_data_available(), "run only when /data is available")
- def test_detection_metrics(self):
- valid_loader = coco2017_val(dataloader_params={"batch_size": 16, "num_workers": 0})
- metrics = [
- DetectionMetrics(num_cls=80, post_prediction_callback=YoloXPostPredictionCallback(), normalize_targets=True),
- DetectionMetrics_050(num_cls=80, post_prediction_callback=YoloXPostPredictionCallback(), normalize_targets=True),
- DetectionMetrics(num_cls=80, post_prediction_callback=YoloXPostPredictionCallback(conf=2), normalize_targets=True),
- ]
- ref_values = [
- np.array([0.24701539, 0.40294355, 0.34654024, 0.28485271]),
- np.array([0.34666198, 0.56854934, 0.5079478, 0.40414381]),
- np.array([0.0, 0.0, 0.0, 0.0]),
- ]
- for met, ref_val in zip(metrics, ref_values):
- met.reset()
- for i, (imgs, targets, extras) in enumerate(valid_loader):
- if i > 5:
- break
- imgs = core_utils.tensor_container_to_device(imgs, self.device)
- targets = core_utils.tensor_container_to_device(targets, self.device)
- output = self.model(imgs)
- met.update(output, targets, device=self.device, inputs=imgs)
- results = met.compute()
- values = np.array([x.item() for x in list(results.values())])
- for expected, actual in zip(ref_val, values):
- self.assertAlmostEqual(expected, actual, delta=5e-3)
- if __name__ == "__main__":
- unittest.main()
|