1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
|
- import os
- import unittest
- import numpy as np
- import torch.cuda
- from super_gradients.common.object_names import Models
- from super_gradients.training import Trainer, utils as core_utils, models
- from super_gradients.training.dataloaders.dataloaders import coco2017_val
- from super_gradients.training.datasets.datasets_conf import COCO_DETECTION_CLASSES_LIST
- from super_gradients.training.metrics import DetectionMetrics, DetectionMetrics_050
- from super_gradients.training.models.detection_models.yolo_base import YoloPostPredictionCallback
- from super_gradients.training.utils.detection_utils import DetectionVisualization
- from tests.core_test_utils import is_data_available
- class TestDetectionUtils(unittest.TestCase):
- def setUp(self):
- self.device = "cuda" if torch.cuda.is_available() else "cpu"
- self.model = models.get(Models.YOLOX_N, pretrained_weights="coco").to(self.device)
- self.model.eval()
- @unittest.skipIf(not is_data_available(), "run only when /data is available")
- def test_visualization(self):
- valid_loader = coco2017_val(dataloader_params={"batch_size": 16})
- trainer = Trainer("visualization_test", device=self.device)
- post_prediction_callback = YoloPostPredictionCallback()
- # Simulate one iteration of validation subset
- batch_i, (imgs, targets) = 0, next(iter(valid_loader))
- imgs = core_utils.tensor_container_to_device(imgs, self.device)
- targets = core_utils.tensor_container_to_device(targets, self.device)
- output = self.model(imgs)
- output = post_prediction_callback(output)
- # Visualize the batch
- DetectionVisualization.visualize_batch(imgs, output, targets, batch_i, COCO_DETECTION_CLASSES_LIST, trainer.checkpoints_dir_path)
- # Assert images ware created and delete them
- img_name = "{}/{}_{}.jpg"
- for i in range(4):
- img_path = img_name.format(trainer.checkpoints_dir_path, batch_i, i)
- self.assertTrue(os.path.exists(img_path))
- os.remove(img_path)
- @unittest.skipIf(not is_data_available(), "run only when /data is available")
- def test_detection_metrics(self):
- valid_loader = coco2017_val(dataloader_params={"batch_size": 16})
- metrics = [
- DetectionMetrics(num_cls=80, post_prediction_callback=YoloPostPredictionCallback(), normalize_targets=True),
- DetectionMetrics_050(num_cls=80, post_prediction_callback=YoloPostPredictionCallback(), normalize_targets=True),
- DetectionMetrics(num_cls=80, post_prediction_callback=YoloPostPredictionCallback(conf=2), normalize_targets=True),
- ]
- ref_values = [
- np.array([0.24662896, 0.4024832, 0.34590888, 0.28435066]),
- np.array([0.34606069, 0.56745648, 0.50594932, 0.40323338]),
- np.array([0.0, 0.0, 0.0, 0.0]),
- ]
- for met, ref_val in zip(metrics, ref_values):
- met.reset()
- for i, (imgs, targets) in enumerate(valid_loader):
- if i > 5:
- break
- imgs = core_utils.tensor_container_to_device(imgs, self.device)
- targets = core_utils.tensor_container_to_device(targets, self.device)
- output = self.model(imgs)
- met.update(output, targets, device=self.device, inputs=imgs)
- results = met.compute()
- values = np.array([x.item() for x in list(results.values())])
- self.assertTrue(np.allclose(values, ref_val))
- if __name__ == "__main__":
- unittest.main()
|