Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

ssd_coco.py 4.2 KB

You have to be logged in to leave a comment. Sign In
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
  1. # SSD Detection training on CoCo Dataset:
  2. import argparse
  3. import torch
  4. from super_gradients.training import SgModel, MultiGPUMode
  5. from super_gradients.training.datasets import CoCoDetectionDatasetInterface
  6. from super_gradients.training.utils.detection_utils import base_detection_collate_fn
  7. from super_gradients.training.utils.ssd_utils import DefaultBoxes, SSDPostPredictCallback
  8. parser = argparse.ArgumentParser()
  9. #################################
  10. # Model Options
  11. ################################
  12. parser.add_argument("--reload", action="store_true")
  13. parser.add_argument("--max_epochs", type=int, default=300)
  14. parser.add_argument("--batch", type=int, default=60)
  15. parser.add_argument("--test-img-size", type=int, default=256)
  16. parser.add_argument("--train-img-size", type=int, default=256)
  17. parser.add_argument("--alpha", type=float, default=1.0)
  18. parser.add_argument("--ema-decay", type=float, default=0.9999)
  19. parser.add_argument("--ema-beta", type=float, default=15)
  20. parser.add_argument("--local_rank", type=int, default=-1)
  21. args, _ = parser.parse_known_args()
  22. distributed = args.local_rank >= 0
  23. dataset_params = {"batch_size": args.batch,
  24. "test_batch_size": args.batch,
  25. "dataset_dir": "/data/coco/",
  26. "train_image_size": args.train_img_size,
  27. "test_image_size": args.test_img_size,
  28. "test_collate_fn": base_detection_collate_fn,
  29. "train_collate_fn": base_detection_collate_fn,
  30. "test_sample_loading_method": "default",
  31. "labels_offset": 1, # all labels are offset by 1 (0 is none)
  32. "dataset_hyper_param": {
  33. "hsv_h": 0.015, # IMAGE HSV-Hue AUGMENTATION (fraction)
  34. "hsv_s": 0.7, # IMAGE HSV-Saturation AUGMENTATION (fraction)
  35. "hsv_v": 0.4, # IMAGE HSV-Value AUGMENTATION (fraction)
  36. "degrees": 0.0, # IMAGE ROTATION (+/- deg)
  37. "translate": 0.1, # IMAGE TRANSLATION (+/- fraction)
  38. "scale": 0.5, # IMAGE SCALE (+/- gain)
  39. "shear": 0.0} # IMAGE SHEAR (+/- deg)
  40. }
  41. dboxes = DefaultBoxes.dboxes256_coco()
  42. arch_params = {"num_classes": 81} # 80 COCO classes + 1 for None
  43. epoch_metrics_headers = {"Epoch": 0, "gpu_mem": 0.0, "sl1": 0.0, "closs": 0.0, "total": 0.0,
  44. "targets": 0, "img_size": 0}
  45. results_titles = ['sl1', 'c-loss', 'Train loss',
  46. 'Precision', 'Recall', 'mAP@0.5:0.95', 'F1', 'val sl1', 'val c-loss',
  47. 'val loss']
  48. model = SgModel(f'ssd_mobilenet_alpha{args.alpha:.1f}_decay{args.ema_decay:.4E}_beta{args.ema_beta:.2E}',
  49. model_checkpoints_location="local",
  50. multi_gpu=MultiGPUMode.DISTRIBUTED_DATA_PARALLEL if distributed else MultiGPUMode.DATA_PARALLEL,
  51. post_prediction_callback=SSDPostPredictCallback(dboxes=dboxes),
  52. epoch_metric_headers=epoch_metrics_headers,
  53. results_titles=results_titles
  54. )
  55. devices = torch.cuda.device_count() if not distributed else 1
  56. coco_dataset_interface = CoCoDetectionDatasetInterface(dataset_params=dataset_params)
  57. model.connect_dataset_interface(coco_dataset_interface, data_loader_num_workers=32)
  58. model.build_model("ssd_mobilenet_v1", arch_params=arch_params, load_checkpoint=args.reload)
  59. training_params = {"max_epochs": args.max_epochs,
  60. "lr_mode": "cosine",
  61. "initial_lr": 0.01,
  62. "batch_accumulate": 1,
  63. "cosine_final_lr_ratio": 0.1,
  64. "warmup_bias_lr": 0.1,
  65. "loss": "ssd_loss",
  66. "criterion_params": {"dboxes": dboxes, "alpha": args.alpha},
  67. "optimizer": "SGD",
  68. "warmup_momentum": 0.8,
  69. "optimizer_params": {"momentum": 0.9,
  70. "weight_decay": 0.0005,
  71. "nesterov": True},
  72. "mixed_precision": False,
  73. "ema": True,
  74. "ema_params": {"decay": args.ema_decay,
  75. "beta": args.ema_beta}
  76. }
  77. model.train(training_params=training_params)
Tip!

Press p or to see the previous file or, n or to see the next file

Comments

Loading...