1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
|
- # SSD Detection training on CoCo Dataset:
- import argparse
- import torch
- from super_gradients.training import SgModel, MultiGPUMode
- from super_gradients.training.datasets import CoCoDetectionDatasetInterface
- from super_gradients.training.utils.detection_utils import base_detection_collate_fn
- from super_gradients.training.utils.ssd_utils import DefaultBoxes, SSDPostPredictCallback
- parser = argparse.ArgumentParser()
- #################################
- # Model Options
- ################################
- parser.add_argument("--reload", action="store_true")
- parser.add_argument("--max_epochs", type=int, default=300)
- parser.add_argument("--batch", type=int, default=60)
- parser.add_argument("--test-img-size", type=int, default=256)
- parser.add_argument("--train-img-size", type=int, default=256)
- parser.add_argument("--alpha", type=float, default=1.0)
- parser.add_argument("--ema-decay", type=float, default=0.9999)
- parser.add_argument("--ema-beta", type=float, default=15)
- parser.add_argument("--local_rank", type=int, default=-1)
- args, _ = parser.parse_known_args()
- distributed = args.local_rank >= 0
- dataset_params = {"batch_size": args.batch,
- "test_batch_size": args.batch,
- "dataset_dir": "/data/coco/",
- "train_image_size": args.train_img_size,
- "test_image_size": args.test_img_size,
- "test_collate_fn": base_detection_collate_fn,
- "train_collate_fn": base_detection_collate_fn,
- "test_sample_loading_method": "default",
- "labels_offset": 1, # all labels are offset by 1 (0 is none)
- "dataset_hyper_param": {
- "hsv_h": 0.015, # IMAGE HSV-Hue AUGMENTATION (fraction)
- "hsv_s": 0.7, # IMAGE HSV-Saturation AUGMENTATION (fraction)
- "hsv_v": 0.4, # IMAGE HSV-Value AUGMENTATION (fraction)
- "degrees": 0.0, # IMAGE ROTATION (+/- deg)
- "translate": 0.1, # IMAGE TRANSLATION (+/- fraction)
- "scale": 0.5, # IMAGE SCALE (+/- gain)
- "shear": 0.0} # IMAGE SHEAR (+/- deg)
- }
- dboxes = DefaultBoxes.dboxes256_coco()
- arch_params = {"num_classes": 81} # 80 COCO classes + 1 for None
- epoch_metrics_headers = {"Epoch": 0, "gpu_mem": 0.0, "sl1": 0.0, "closs": 0.0, "total": 0.0,
- "targets": 0, "img_size": 0}
- results_titles = ['sl1', 'c-loss', 'Train loss',
- 'Precision', 'Recall', 'mAP@0.5:0.95', 'F1', 'val sl1', 'val c-loss',
- 'val loss']
- model = SgModel(f'ssd_mobilenet_alpha{args.alpha:.1f}_decay{args.ema_decay:.4E}_beta{args.ema_beta:.2E}',
- model_checkpoints_location="local",
- multi_gpu=MultiGPUMode.DISTRIBUTED_DATA_PARALLEL if distributed else MultiGPUMode.DATA_PARALLEL,
- post_prediction_callback=SSDPostPredictCallback(dboxes=dboxes),
- epoch_metric_headers=epoch_metrics_headers,
- results_titles=results_titles
- )
- devices = torch.cuda.device_count() if not distributed else 1
- coco_dataset_interface = CoCoDetectionDatasetInterface(dataset_params=dataset_params)
- model.connect_dataset_interface(coco_dataset_interface, data_loader_num_workers=32)
- model.build_model("ssd_mobilenet_v1", arch_params=arch_params, load_checkpoint=args.reload)
- training_params = {"max_epochs": args.max_epochs,
- "lr_mode": "cosine",
- "initial_lr": 0.01,
- "batch_accumulate": 1,
- "cosine_final_lr_ratio": 0.1,
- "warmup_bias_lr": 0.1,
- "loss": "ssd_loss",
- "criterion_params": {"dboxes": dboxes, "alpha": args.alpha},
- "optimizer": "SGD",
- "warmup_momentum": 0.8,
- "optimizer_params": {"momentum": 0.9,
- "weight_decay": 0.0005,
- "nesterov": True},
- "mixed_precision": False,
- "ema": True,
- "ema_params": {"decay": args.ema_decay,
- "beta": args.ema_beta}
- }
- model.train(training_params=training_params)
|