1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
|
- from typing import Dict, Mapping
- import hydra
- import numpy as np
- import torch
- from torch.utils.data import BatchSampler, DataLoader, TensorDataset, RandomSampler
- import super_gradients
- from super_gradients.common.abstractions.abstract_logger import get_logger
- from super_gradients.common.registry.registry import register_dataloader, ALL_DATALOADERS
- from super_gradients.common.factories.collate_functions_factory import CollateFunctionsFactory
- from super_gradients.common.factories.datasets_factory import DatasetsFactory
- from super_gradients.common.factories.samplers_factory import SamplersFactory
- from super_gradients.common.object_names import Dataloaders
- from super_gradients.training.datasets import ImageNetDataset
- from super_gradients.training.datasets.classification_datasets.cifar import (
- Cifar10,
- Cifar100,
- )
- from super_gradients.training.datasets.detection_datasets import COCODetectionDataset, RoboflowDetectionDataset, YoloDarknetFormatDetectionDataset
- from super_gradients.training.datasets.detection_datasets.pascal_voc_detection import (
- PascalVOCUnifiedDetectionTrainDataset,
- PascalVOCDetectionDataset,
- )
- from super_gradients.training.datasets.pose_estimation_datasets import COCOKeypointsDataset
- from super_gradients.training.datasets.segmentation_datasets import (
- CityscapesDataset,
- CoCoSegmentationDataSet,
- PascalVOC2012SegmentationDataSet,
- PascalVOCAndAUGUnifiedDataset,
- SuperviselyPersonsDataset,
- MapillaryDataset,
- )
- from super_gradients.training.utils import get_param
- from super_gradients.training.utils.distributed_training_utils import (
- wait_for_the_master,
- get_local_rank,
- )
- from super_gradients.training.utils.utils import override_default_params_without_nones
- from super_gradients.common.environment.cfg_utils import load_dataset_params
- logger = get_logger(__name__)
- def get_data_loader(config_name: str, dataset_cls: object, train: bool, dataset_params: Mapping = None, dataloader_params: Mapping = None) -> DataLoader:
- """
- Class for creating dataloaders for taking defaults from yaml files in src/super_gradients/recipes.
- :param config_name: yaml config filename of dataset_params in recipes (for example coco_detection_dataset_params).
- :param dataset_cls: torch dataset uninitialized class.
- :param train: controls whether to take
- cfg.train_dataloader_params or cfg.valid_dataloader_params as defaults for the dataset constructor
- and
- cfg.train_dataset_params or cfg.valid_dataset_params as defaults for DataLoader contructor.
- :param dataset_params: dataset params that override the yaml configured defaults, then passed to the dataset_cls.__init__.
- :param dataloader_params: DataLoader params that override the yaml configured defaults, then passed to the DataLoader.__init__
- :return: DataLoader
- """
- if dataloader_params is None:
- dataloader_params = dict()
- if dataset_params is None:
- dataset_params = dict()
- cfg = load_dataset_params(config_name=config_name)
- dataset_params = _process_dataset_params(cfg, dataset_params, train)
- local_rank = get_local_rank()
- with wait_for_the_master(local_rank):
- dataset = dataset_cls(**dataset_params)
- if not hasattr(dataset, "dataset_params"):
- dataset.dataset_params = dataset_params
- dataloader_params = _process_dataloader_params(cfg, dataloader_params, dataset, train)
- dataloader = DataLoader(dataset=dataset, **dataloader_params)
- dataloader.dataloader_params = dataloader_params
- return dataloader
- def _process_dataset_params(cfg, dataset_params, train):
- default_dataset_params = cfg.train_dataset_params if train else cfg.val_dataset_params
- default_dataset_params = hydra.utils.instantiate(default_dataset_params)
- for key, val in default_dataset_params.items():
- if key not in dataset_params.keys() or dataset_params[key] is None:
- dataset_params[key] = val
- return dataset_params
- def _process_dataloader_params(cfg, dataloader_params, dataset, train):
- default_dataloader_params = cfg.train_dataloader_params if train else cfg.val_dataloader_params
- default_dataloader_params = hydra.utils.instantiate(default_dataloader_params)
- dataloader_params = _process_sampler_params(dataloader_params, dataset, default_dataloader_params)
- dataloader_params = _process_collate_fn_params(dataloader_params)
- # The following check is needed to gracefully handle the rare but possible case when the dataset length
- # is less than the number of workers. In this case DataLoader will crash.
- # So we clamp the number of workers to not exceed the dataset length.
- num_workers = get_param(dataloader_params, "num_workers")
- if num_workers is not None and num_workers > 0:
- num_workers = min(num_workers, len(dataset))
- dataloader_params["num_workers"] = num_workers
- return dataloader_params
- def _process_collate_fn_params(dataloader_params):
- if get_param(dataloader_params, "collate_fn") is not None:
- dataloader_params["collate_fn"] = CollateFunctionsFactory().get(dataloader_params["collate_fn"])
- return dataloader_params
- def _process_sampler_params(dataloader_params, dataset, default_dataloader_params):
- is_dist = super_gradients.is_distributed()
- dataloader_params = override_default_params_without_nones(dataloader_params, default_dataloader_params)
- if get_param(dataloader_params, "sampler") is not None:
- dataloader_params = _instantiate_sampler(dataset, dataloader_params)
- elif is_dist:
- dataloader_params["sampler"] = {"DistributedSampler": {}}
- dataloader_params = _instantiate_sampler(dataset, dataloader_params)
- elif get_param(dataloader_params, "min_samples") is not None:
- min_samples = dataloader_params.pop("min_samples")
- if len(dataset) < min_samples:
- dataloader_params["sampler"] = RandomSampler(dataset, replacement=True, num_samples=min_samples)
- if "shuffle" in dataloader_params.keys():
- dataloader_params.pop("shuffle")
- logger.info(f"Using min_samples={min_samples}")
- if get_param(dataloader_params, "batch_sampler"):
- sampler = dataloader_params.pop("sampler")
- batch_size = dataloader_params.pop("batch_size")
- if "drop_last" in dataloader_params:
- drop_last = dataloader_params.pop("drop_last")
- else:
- drop_last = dataloader_params["drop_last"]
- dataloader_params["batch_sampler"] = BatchSampler(sampler=sampler, batch_size=batch_size, drop_last=drop_last)
- return dataloader_params
- def _instantiate_sampler(dataset, dataloader_params):
- sampler_name = list(dataloader_params["sampler"].keys())[0]
- if "shuffle" in dataloader_params.keys():
- # SHUFFLE IS MUTUALLY EXCLUSIVE WITH SAMPLER ARG IN DATALOADER INIT
- dataloader_params["sampler"][sampler_name]["shuffle"] = dataloader_params.pop("shuffle")
- dataloader_params["sampler"][sampler_name]["dataset"] = dataset
- dataloader_params["sampler"] = SamplersFactory().get(dataloader_params["sampler"])
- return dataloader_params
- @register_dataloader(Dataloaders.COCO2017_TRAIN)
- def coco2017_train(dataset_params: Dict = None, dataloader_params: Dict = None) -> DataLoader:
- return get_data_loader(
- config_name="coco_detection_dataset_params",
- dataset_cls=COCODetectionDataset,
- train=True,
- dataset_params=dataset_params,
- dataloader_params=dataloader_params,
- )
- @register_dataloader(Dataloaders.COCO2017_VAL)
- def coco2017_val(dataset_params: Dict = None, dataloader_params: Dict = None) -> DataLoader:
- return get_data_loader(
- config_name="coco_detection_dataset_params",
- dataset_cls=COCODetectionDataset,
- train=False,
- dataset_params=dataset_params,
- dataloader_params=dataloader_params,
- )
- @register_dataloader(Dataloaders.COCO2017_TRAIN_YOLO_NAS)
- def coco2017_train_yolo_nas(dataset_params: Dict = None, dataloader_params: Dict = None) -> DataLoader:
- return get_data_loader(
- config_name="coco_detection_yolo_nas_dataset_params",
- dataset_cls=COCODetectionDataset,
- train=True,
- dataset_params=dataset_params,
- dataloader_params=dataloader_params,
- )
- @register_dataloader(Dataloaders.COCO2017_VAL_YOLO_NAS)
- def coco2017_val_yolo_nas(dataset_params: Dict = None, dataloader_params: Dict = None) -> DataLoader:
- return get_data_loader(
- config_name="coco_detection_yolo_nas_dataset_params",
- dataset_cls=COCODetectionDataset,
- train=False,
- dataset_params=dataset_params,
- dataloader_params=dataloader_params,
- )
- @register_dataloader(Dataloaders.COCO2017_TRAIN_PPYOLOE)
- def coco2017_train_ppyoloe(dataset_params: Dict = None, dataloader_params: Dict = None) -> DataLoader:
- return get_data_loader(
- config_name="coco_detection_ppyoloe_dataset_params",
- dataset_cls=COCODetectionDataset,
- train=True,
- dataset_params=dataset_params,
- dataloader_params=dataloader_params,
- )
- @register_dataloader(Dataloaders.COCO2017_VAL_PPYOLOE)
- def coco2017_val_ppyoloe(dataset_params: Dict = None, dataloader_params: Dict = None) -> DataLoader:
- return get_data_loader(
- config_name="coco_detection_ppyoloe_dataset_params",
- dataset_cls=COCODetectionDataset,
- train=False,
- dataset_params=dataset_params,
- dataloader_params=dataloader_params,
- )
- @register_dataloader(Dataloaders.COCO2017_TRAIN_YOLOX)
- def coco2017_train_yolox(dataset_params: Dict = None, dataloader_params: Dict = None) -> DataLoader:
- return coco2017_train(dataset_params, dataloader_params)
- @register_dataloader(Dataloaders.COCO2017_VAL_YOLOX)
- def coco2017_val_yolox(dataset_params: Dict = None, dataloader_params: Dict = None) -> DataLoader:
- return coco2017_val(dataset_params, dataloader_params)
- @register_dataloader(Dataloaders.COCO2017_TRAIN_SSD_LITE_MOBILENET_V2)
- def coco2017_train_ssd_lite_mobilenet_v2(dataset_params: Dict = None, dataloader_params: Dict = None) -> DataLoader:
- return get_data_loader(
- config_name="coco_detection_ssd_lite_mobilenet_v2_dataset_params",
- dataset_cls=COCODetectionDataset,
- train=True,
- dataset_params=dataset_params,
- dataloader_params=dataloader_params,
- )
- @register_dataloader(Dataloaders.COCO2017_VAL_SSD_LITE_MOBILENET_V2)
- def coco2017_val_ssd_lite_mobilenet_v2(dataset_params: Dict = None, dataloader_params: Dict = None) -> DataLoader:
- return get_data_loader(
- config_name="coco_detection_ssd_lite_mobilenet_v2_dataset_params",
- dataset_cls=COCODetectionDataset,
- train=False,
- dataset_params=dataset_params,
- dataloader_params=dataloader_params,
- )
- @register_dataloader(Dataloaders.ROBOFLOW_TRAIN_BASE)
- def roboflow_train_yolox(dataset_params: Dict = None, dataloader_params: Dict = None):
- return get_data_loader(
- config_name="roboflow_detection_dataset_params",
- dataset_cls=RoboflowDetectionDataset,
- train=True,
- dataset_params=dataset_params,
- dataloader_params=dataloader_params,
- )
- @register_dataloader(Dataloaders.ROBOFLOW_VAL_BASE)
- def roboflow_val_yolox(dataset_params: Dict = None, dataloader_params: Dict = None):
- return get_data_loader(
- config_name="roboflow_detection_dataset_params",
- dataset_cls=RoboflowDetectionDataset,
- train=False,
- dataset_params=dataset_params,
- dataloader_params=dataloader_params,
- )
- @register_dataloader(Dataloaders.COCO_DETECTION_YOLO_FORMAT_TRAIN)
- def coco_detection_yolo_format_train(dataset_params: Dict = None, dataloader_params: Dict = None) -> DataLoader:
- return get_data_loader(
- config_name="coco_detection_yolo_format_base_dataset_params",
- dataset_cls=YoloDarknetFormatDetectionDataset,
- train=True,
- dataset_params=dataset_params,
- dataloader_params=dataloader_params,
- )
- @register_dataloader(Dataloaders.COCO_DETECTION_YOLO_FORMAT_VAL)
- def coco_detection_yolo_format_val(dataset_params: Dict = None, dataloader_params: Dict = None) -> DataLoader:
- return get_data_loader(
- config_name="coco_detection_yolo_format_base_dataset_params",
- dataset_cls=YoloDarknetFormatDetectionDataset,
- train=False,
- dataset_params=dataset_params,
- dataloader_params=dataloader_params,
- )
- @register_dataloader(Dataloaders.IMAGENET_TRAIN)
- def imagenet_train(dataset_params: Dict = None, dataloader_params: Dict = None, config_name="imagenet_dataset_params"):
- return get_data_loader(
- config_name=config_name,
- dataset_cls=ImageNetDataset,
- train=True,
- dataset_params=dataset_params,
- dataloader_params=dataloader_params,
- )
- @register_dataloader(Dataloaders.IMAGENET_VAL)
- def imagenet_val(dataset_params: Dict = None, dataloader_params: Dict = None, config_name="imagenet_dataset_params"):
- return get_data_loader(
- config_name=config_name,
- dataset_cls=ImageNetDataset,
- train=False,
- dataset_params=dataset_params,
- dataloader_params=dataloader_params,
- )
- @register_dataloader(Dataloaders.IMAGENET_EFFICIENTNET_TRAIN)
- def imagenet_efficientnet_train(dataset_params: Dict = None, dataloader_params: Dict = None) -> DataLoader:
- return imagenet_train(
- dataset_params,
- dataloader_params,
- config_name="imagenet_efficientnet_dataset_params",
- )
- @register_dataloader(Dataloaders.IMAGENET_EFFICIENTNET_VAL)
- def imagenet_efficientnet_val(dataset_params: Dict = None, dataloader_params: Dict = None) -> DataLoader:
- return imagenet_val(
- dataset_params,
- dataloader_params,
- config_name="imagenet_efficientnet_dataset_params",
- )
- @register_dataloader(Dataloaders.IMAGENET_MOBILENETV2_TRAIN)
- def imagenet_mobilenetv2_train(dataset_params: Dict = None, dataloader_params: Dict = None) -> DataLoader:
- return imagenet_train(
- dataset_params,
- dataloader_params,
- config_name="imagenet_mobilenetv2_dataset_params",
- )
- @register_dataloader(Dataloaders.IMAGENET_MOBILENETV2_VAL)
- def imagenet_mobilenetv2_val(dataset_params: Dict = None, dataloader_params: Dict = None) -> DataLoader:
- return imagenet_val(
- dataset_params,
- dataloader_params,
- config_name="imagenet_mobilenetv2_dataset_params",
- )
- @register_dataloader(Dataloaders.IMAGENET_MOBILENETV3_TRAIN)
- def imagenet_mobilenetv3_train(dataset_params: Dict = None, dataloader_params: Dict = None) -> DataLoader:
- return imagenet_train(
- dataset_params,
- dataloader_params,
- config_name="imagenet_mobilenetv3_dataset_params",
- )
- @register_dataloader(Dataloaders.IMAGENET_MOBILENETV3_VAL)
- def imagenet_mobilenetv3_val(dataset_params: Dict = None, dataloader_params: Dict = None) -> DataLoader:
- return imagenet_val(
- dataset_params,
- dataloader_params,
- config_name="imagenet_mobilenetv3_dataset_params",
- )
- @register_dataloader(Dataloaders.IMAGENET_REGNETY_TRAIN)
- def imagenet_regnetY_train(dataset_params: Dict = None, dataloader_params: Dict = None) -> DataLoader:
- return imagenet_train(dataset_params, dataloader_params, config_name="imagenet_regnetY_dataset_params")
- @register_dataloader(Dataloaders.IMAGENET_REGNETY_VAL)
- def imagenet_regnetY_val(dataset_params: Dict = None, dataloader_params: Dict = None) -> DataLoader:
- return imagenet_val(dataset_params, dataloader_params, config_name="imagenet_regnetY_dataset_params")
- @register_dataloader(Dataloaders.IMAGENET_RESNET50_TRAIN)
- def imagenet_resnet50_train(dataset_params: Dict = None, dataloader_params: Dict = None) -> DataLoader:
- return imagenet_train(
- dataset_params,
- dataloader_params,
- config_name="imagenet_resnet50_dataset_params",
- )
- @register_dataloader(Dataloaders.IMAGENET_RESNET50_VAL)
- def imagenet_resnet50_val(dataset_params: Dict = None, dataloader_params: Dict = None) -> DataLoader:
- return imagenet_val(
- dataset_params,
- dataloader_params,
- config_name="imagenet_resnet50_dataset_params",
- )
- @register_dataloader(Dataloaders.IMAGENET_RESNET50_KD_TRAIN)
- def imagenet_resnet50_kd_train(dataset_params: Dict = None, dataloader_params: Dict = None) -> DataLoader:
- return imagenet_train(
- dataset_params,
- dataloader_params,
- config_name="imagenet_resnet50_kd_dataset_params",
- )
- @register_dataloader(Dataloaders.IMAGENET_RESNET50_KD_VAL)
- def imagenet_resnet50_kd_val(dataset_params: Dict = None, dataloader_params: Dict = None) -> DataLoader:
- return imagenet_val(
- dataset_params,
- dataloader_params,
- config_name="imagenet_resnet50_kd_dataset_params",
- )
- @register_dataloader(Dataloaders.IMAGENET_VIT_BASE_TRAIN)
- def imagenet_vit_base_train(dataset_params: Dict = None, dataloader_params: Dict = None) -> DataLoader:
- return imagenet_train(
- dataset_params,
- dataloader_params,
- config_name="imagenet_vit_base_dataset_params",
- )
- @register_dataloader(Dataloaders.IMAGENET_VIT_BASE_VAL)
- def imagenet_vit_base_val(dataset_params: Dict = None, dataloader_params: Dict = None) -> DataLoader:
- return imagenet_val(
- dataset_params,
- dataloader_params,
- config_name="imagenet_vit_base_dataset_params",
- )
- @register_dataloader(Dataloaders.TINY_IMAGENET_TRAIN)
- def tiny_imagenet_train(
- dataset_params: Dict = None,
- dataloader_params: Dict = None,
- config_name="tiny_imagenet_dataset_params",
- ):
- return get_data_loader(
- config_name=config_name,
- dataset_cls=ImageNetDataset,
- train=True,
- dataset_params=dataset_params,
- dataloader_params=dataloader_params,
- )
- @register_dataloader(Dataloaders.TINY_IMAGENET_VAL)
- def tiny_imagenet_val(
- dataset_params: Dict = None,
- dataloader_params: Dict = None,
- config_name="tiny_imagenet_dataset_params",
- ):
- return get_data_loader(
- config_name=config_name,
- dataset_cls=ImageNetDataset,
- train=False,
- dataset_params=dataset_params,
- dataloader_params=dataloader_params,
- )
- @register_dataloader(Dataloaders.CIFAR10_TRAIN)
- def cifar10_train(dataset_params: Dict = None, dataloader_params: Dict = None) -> DataLoader:
- return get_data_loader(
- config_name="cifar10_dataset_params",
- dataset_cls=Cifar10,
- train=True,
- dataset_params=dataset_params,
- dataloader_params=dataloader_params,
- )
- @register_dataloader(Dataloaders.CIFAR10_VAL)
- def cifar10_val(dataset_params: Dict = None, dataloader_params: Dict = None) -> DataLoader:
- return get_data_loader(
- config_name="cifar10_dataset_params",
- dataset_cls=Cifar10,
- train=False,
- dataset_params=dataset_params,
- dataloader_params=dataloader_params,
- )
- @register_dataloader(Dataloaders.CIFAR100_TRAIN)
- def cifar100_train(dataset_params: Dict = None, dataloader_params: Dict = None) -> DataLoader:
- return get_data_loader(
- config_name="cifar100_dataset_params",
- dataset_cls=Cifar100,
- train=True,
- dataset_params=dataset_params,
- dataloader_params=dataloader_params,
- )
- @register_dataloader(Dataloaders.CIFAR100_VAL)
- def cifar100_val(dataset_params: Dict = None, dataloader_params: Dict = None) -> DataLoader:
- return get_data_loader(
- config_name="cifar100_dataset_params",
- dataset_cls=Cifar100,
- train=False,
- dataset_params=dataset_params,
- dataloader_params=dataloader_params,
- )
- def classification_test_dataloader(batch_size: int = 5, image_size: int = 32, dataset_size: int = None) -> DataLoader:
- dataset_size = dataset_size or batch_size
- images = torch.Tensor(np.zeros((dataset_size, 3, image_size, image_size)))
- ground_truth = torch.LongTensor(np.zeros((dataset_size)))
- dataset = TensorDataset(images, ground_truth)
- return DataLoader(dataset=dataset, batch_size=batch_size)
- def detection_test_dataloader(batch_size: int = 5, image_size: int = 320, dataset_size: int = None) -> DataLoader:
- dataset_size = dataset_size or batch_size
- images = torch.Tensor(np.zeros((dataset_size, 3, image_size, image_size)))
- ground_truth = torch.Tensor(np.zeros((dataset_size, 6)))
- dataset = TensorDataset(images, ground_truth)
- return DataLoader(dataset=dataset, batch_size=batch_size)
- def segmentation_test_dataloader(batch_size: int = 5, image_size: int = 512, dataset_size: int = None) -> DataLoader:
- dataset_size = dataset_size or batch_size
- images = torch.Tensor(np.zeros((dataset_size, 3, image_size, image_size)))
- ground_truth = torch.LongTensor(np.zeros((dataset_size, image_size, image_size)))
- dataset = TensorDataset(images, ground_truth)
- return DataLoader(dataset=dataset, batch_size=batch_size)
- @register_dataloader(Dataloaders.CITYSCAPES_TRAIN)
- def cityscapes_train(dataset_params: Dict = None, dataloader_params: Dict = None) -> DataLoader:
- return get_data_loader(
- config_name="cityscapes_dataset_params",
- dataset_cls=CityscapesDataset,
- train=True,
- dataset_params=dataset_params,
- dataloader_params=dataloader_params,
- )
- @register_dataloader(Dataloaders.CITYSCAPES_VAL)
- def cityscapes_val(dataset_params: Dict = None, dataloader_params: Dict = None) -> DataLoader:
- return get_data_loader(
- config_name="cityscapes_dataset_params",
- dataset_cls=CityscapesDataset,
- train=False,
- dataset_params=dataset_params,
- dataloader_params=dataloader_params,
- )
- @register_dataloader(Dataloaders.CITYSCAPES_STDC_SEG50_TRAIN)
- def cityscapes_stdc_seg50_train(dataset_params: Dict = None, dataloader_params: Dict = None) -> DataLoader:
- return get_data_loader(
- config_name="cityscapes_stdc_seg50_dataset_params",
- dataset_cls=CityscapesDataset,
- train=True,
- dataset_params=dataset_params,
- dataloader_params=dataloader_params,
- )
- @register_dataloader(Dataloaders.CITYSCAPES_STDC_SEG50_VAL)
- def cityscapes_stdc_seg50_val(dataset_params: Dict = None, dataloader_params: Dict = None) -> DataLoader:
- return get_data_loader(
- config_name="cityscapes_stdc_seg50_dataset_params",
- dataset_cls=CityscapesDataset,
- train=False,
- dataset_params=dataset_params,
- dataloader_params=dataloader_params,
- )
- @register_dataloader(Dataloaders.CITYSCAPES_STDC_SEG75_TRAIN)
- def cityscapes_stdc_seg75_train(dataset_params: Dict = None, dataloader_params: Dict = None) -> DataLoader:
- return get_data_loader(
- config_name="cityscapes_stdc_seg75_dataset_params",
- dataset_cls=CityscapesDataset,
- train=True,
- dataset_params=dataset_params,
- dataloader_params=dataloader_params,
- )
- @register_dataloader(Dataloaders.CITYSCAPES_STDC_SEG75_VAL)
- def cityscapes_stdc_seg75_val(dataset_params: Dict = None, dataloader_params: Dict = None) -> DataLoader:
- return get_data_loader(
- config_name="cityscapes_stdc_seg75_dataset_params",
- dataset_cls=CityscapesDataset,
- train=False,
- dataset_params=dataset_params,
- dataloader_params=dataloader_params,
- )
- @register_dataloader(Dataloaders.CITYSCAPES_REGSEG48_TRAIN)
- def cityscapes_regseg48_train(dataset_params: Dict = None, dataloader_params: Dict = None) -> DataLoader:
- return get_data_loader(
- config_name="cityscapes_regseg48_dataset_params",
- dataset_cls=CityscapesDataset,
- train=True,
- dataset_params=dataset_params,
- dataloader_params=dataloader_params,
- )
- @register_dataloader(Dataloaders.CITYSCAPES_REGSEG48_VAL)
- def cityscapes_regseg48_val(dataset_params: Dict = None, dataloader_params: Dict = None) -> DataLoader:
- return get_data_loader(
- config_name="cityscapes_regseg48_dataset_params",
- dataset_cls=CityscapesDataset,
- train=False,
- dataset_params=dataset_params,
- dataloader_params=dataloader_params,
- )
- @register_dataloader(Dataloaders.CITYSCAPES_DDRNET_TRAIN)
- def cityscapes_ddrnet_train(dataset_params: Dict = None, dataloader_params: Dict = None) -> DataLoader:
- return get_data_loader(
- config_name="cityscapes_ddrnet_dataset_params",
- dataset_cls=CityscapesDataset,
- train=True,
- dataset_params=dataset_params,
- dataloader_params=dataloader_params,
- )
- @register_dataloader(Dataloaders.CITYSCAPES_DDRNET_VAL)
- def cityscapes_ddrnet_val(dataset_params: Dict = None, dataloader_params: Dict = None) -> DataLoader:
- return get_data_loader(
- config_name="cityscapes_ddrnet_dataset_params",
- dataset_cls=CityscapesDataset,
- train=False,
- dataset_params=dataset_params,
- dataloader_params=dataloader_params,
- )
- @register_dataloader(Dataloaders.COCO_SEGMENTATION_TRAIN)
- def coco_segmentation_train(dataset_params: Dict = None, dataloader_params: Dict = None) -> DataLoader:
- return get_data_loader(
- config_name="coco_segmentation_dataset_params",
- dataset_cls=CoCoSegmentationDataSet,
- train=True,
- dataset_params=dataset_params,
- dataloader_params=dataloader_params,
- )
- @register_dataloader(Dataloaders.COCO_SEGMENTATION_VAL)
- def coco_segmentation_val(dataset_params: Dict = None, dataloader_params: Dict = None) -> DataLoader:
- return get_data_loader(
- config_name="coco_segmentation_dataset_params",
- dataset_cls=CoCoSegmentationDataSet,
- train=False,
- dataset_params=dataset_params,
- dataloader_params=dataloader_params,
- )
- @register_dataloader(Dataloaders.PASCAL_AUG_SEGMENTATION_TRAIN)
- def pascal_aug_segmentation_train(dataset_params: Dict = None, dataloader_params: Dict = None) -> DataLoader:
- return get_data_loader(
- config_name="pascal_aug_segmentation_dataset_params",
- dataset_cls=PascalVOCAndAUGUnifiedDataset,
- train=True,
- dataset_params=dataset_params,
- dataloader_params=dataloader_params,
- )
- @register_dataloader(Dataloaders.PASCAL_AUG_SEGMENTATION_VAL)
- def pascal_aug_segmentation_val(dataset_params: Dict = None, dataloader_params: Dict = None) -> DataLoader:
- return pascal_voc_segmentation_val(dataset_params=dataset_params, dataloader_params=dataloader_params)
- @register_dataloader(Dataloaders.PASCAL_VOC_SEGMENTATION_TRAIN)
- def pascal_voc_segmentation_train(dataset_params: Dict = None, dataloader_params: Dict = None) -> DataLoader:
- return get_data_loader(
- config_name="pascal_voc_segmentation_dataset_params",
- dataset_cls=PascalVOC2012SegmentationDataSet,
- train=True,
- dataset_params=dataset_params,
- dataloader_params=dataloader_params,
- )
- @register_dataloader(Dataloaders.PASCAL_VOC_SEGMENTATION_VAL)
- def pascal_voc_segmentation_val(dataset_params: Dict = None, dataloader_params: Dict = None) -> DataLoader:
- return get_data_loader(
- config_name="pascal_voc_segmentation_dataset_params",
- dataset_cls=PascalVOC2012SegmentationDataSet,
- train=False,
- dataset_params=dataset_params,
- dataloader_params=dataloader_params,
- )
- @register_dataloader(Dataloaders.SUPERVISELY_PERSONS_TRAIN)
- def supervisely_persons_train(dataset_params: Dict = None, dataloader_params: Dict = None) -> DataLoader:
- return get_data_loader(
- config_name="supervisely_persons_dataset_params",
- dataset_cls=SuperviselyPersonsDataset,
- train=True,
- dataset_params=dataset_params,
- dataloader_params=dataloader_params,
- )
- @register_dataloader(Dataloaders.SUPERVISELY_PERSONS_VAL)
- def supervisely_persons_val(dataset_params: Dict = None, dataloader_params: Dict = None) -> DataLoader:
- return get_data_loader(
- config_name="supervisely_persons_dataset_params",
- dataset_cls=SuperviselyPersonsDataset,
- train=False,
- dataset_params=dataset_params,
- dataloader_params=dataloader_params,
- )
- @register_dataloader(Dataloaders.MAPILLARY_TRAIN)
- def mapillary_train(dataset_params: Dict = None, dataloader_params: Dict = None) -> DataLoader:
- return get_data_loader(
- config_name="mapillary_dataset_params",
- dataset_cls=MapillaryDataset,
- train=True,
- dataset_params=dataset_params,
- dataloader_params=dataloader_params,
- )
- @register_dataloader(Dataloaders.MAPILLARY_VAL)
- def mapillary_val(dataset_params: Dict = None, dataloader_params: Dict = None) -> DataLoader:
- return get_data_loader(
- config_name="mapillary_dataset_params",
- dataset_cls=MapillaryDataset,
- train=False,
- dataset_params=dataset_params,
- dataloader_params=dataloader_params,
- )
- @register_dataloader(Dataloaders.PASCAL_VOC_DETECTION_TRAIN)
- def pascal_voc_detection_train(dataset_params: Dict = None, dataloader_params: Dict = None) -> DataLoader:
- return get_data_loader(
- config_name="pascal_voc_detection_dataset_params",
- dataset_cls=PascalVOCUnifiedDetectionTrainDataset,
- train=True,
- dataset_params=dataset_params,
- dataloader_params=dataloader_params,
- )
- @register_dataloader(Dataloaders.PASCAL_VOC_DETECTION_VAL)
- def pascal_voc_detection_val(dataset_params: Dict = None, dataloader_params: Dict = None) -> DataLoader:
- return get_data_loader(
- config_name="pascal_voc_detection_dataset_params",
- dataset_cls=PascalVOCDetectionDataset,
- train=False,
- dataset_params=dataset_params,
- dataloader_params=dataloader_params,
- )
- @register_dataloader(Dataloaders.COCO2017_POSE_TRAIN)
- def coco2017_pose_train(dataset_params: Dict = None, dataloader_params: Dict = None) -> DataLoader:
- return get_data_loader(
- config_name="coco_pose_estimation_dataset_params",
- dataset_cls=COCOKeypointsDataset,
- train=True,
- dataset_params=dataset_params,
- dataloader_params=dataloader_params,
- )
- @register_dataloader(Dataloaders.COCO2017_POSE_VAL)
- def coco2017_pose_val(dataset_params: Dict = None, dataloader_params: Dict = None) -> DataLoader:
- return get_data_loader(
- config_name="coco_pose_estimation_dataset_params",
- dataset_cls=COCOKeypointsDataset,
- train=False,
- dataset_params=dataset_params,
- dataloader_params=dataloader_params,
- )
- def get(name: str = None, dataset_params: Dict = None, dataloader_params: Dict = None, dataset: torch.utils.data.Dataset = None) -> DataLoader:
- """
- Get DataLoader of the recipe-configured dataset defined by name in ALL_DATALOADERS.
- :param name: dataset name in ALL_DATALOADERS.
- :param dataset_params: dataset params that override the yaml configured defaults, then passed to the dataset_cls.__init__.
- :param dataloader_params: DataLoader params that override the yaml configured defaults, then passed to the DataLoader.__init__
- :param dataset: torch.utils.data.Dataset to be used instead of passing "name" (i.e for external dataset objects).
- :return: initialized DataLoader.
- """
- if dataset is not None:
- if name or dataset_params:
- raise ValueError("'name' and 'dataset_params' cannot be passed with initialized dataset.")
- dataset_str = get_param(dataloader_params, "dataset")
- if dataset_str:
- if name or dataset:
- raise ValueError("'name' and 'datasets' cannot be passed when 'dataset' arg dataloader_params is used as well.")
- if dataset_params is not None:
- dataset = DatasetsFactory().get(conf={dataset_str: dataset_params})
- else:
- dataset = DatasetsFactory().get(conf=dataset_str)
- _ = dataloader_params.pop("dataset")
- if dataset is not None:
- dataloader_params = _process_sampler_params(dataloader_params, dataset, {})
- dataloader = DataLoader(dataset=dataset, **dataloader_params)
- elif name not in ALL_DATALOADERS.keys():
- raise ValueError("Unsupported dataloader: " + str(name))
- else:
- dataloader_cls = ALL_DATALOADERS[name]
- dataloader = dataloader_cls(dataset_params=dataset_params, dataloader_params=dataloader_params)
- return dataloader
|