Are you sure you want to delete this access key?
We defined recipes to ensure that anyone can reproduce our results in the most simple way.
Setup
To run recipes you first need to clone the super-gradients repository:
git clone https://github.com/Deci-AI/super-gradients
You then need to move to the root of the clone project (where you find "requirements.txt" and "setup.py") and install super-gradients:
pip install -e .
Finally, append super-gradients to the python path: (Replace "YOUR-LOCAL-PATH" with the path to the downloaded repo)
export PYTHONPATH=$PYTHONPATH:<YOUR-LOCAL-PATH>/super-gradients/
How to run a recipe
The recipes are defined in .yaml format and we use the hydra library to allow you to easily customize the parameters. The basic basic syntax is as follow:
python src/super_gradients/examples/train_from_recipe_example/train_from_recipe.py --config-name=<CONFIG-NAME> dataset_params.data_dir=<PATH-TO-DATASET>
Note: this script needs to be launched from the root folder of super_gradients Note: if you stored your dataset in the path specified by the recipe you can drop "dataset_params.data_dir=".
Explore our recipes
You can find all of our recipes here. You will find information about the performance of a recipe as well as the command to execute it in the header of its config file.
Example: Training of YoloX Small on Coco 2017, using 8 GPU
python src/super_gradients/examples/train_from_recipe_example/train_from_recipe.py --config-name=coco2017_yolox architecture=yolox_s dataset_params.data_dir=/home/coco2017
List of commands
All the commands to launch the recipes described here are listed below. Please make to "dataset_params.data_dir=" if you did not store the dataset in the path specified by the recipe (as showed in the example above).
- Classification
resnet:
python src/super_gradients/examples/train_from_recipe_example/train_from_recipe.py --config-name=cifar10_resnet +experiment_name=cifar10
efficientnet
python src/super_gradients/examples/train_from_recipe_example/train_from_recipe.py --config-name=imagenet_efficientnet
mobilenetv2
python src/super_gradients/examples/train_from_recipe_example/train_from_recipe.py --config-name=imagenet_mobilenetv2
mobilenetv3 small
python src/super_gradients/examples/train_from_recipe_example/train_from_recipe.py --config-name=imagenet_mobilenetv3_small
mobilenetv3 large
python src/super_gradients/examples/train_from_recipe_example/train_from_recipe.py --config-name=imagenet_mobilenetv3_large
regnetY200
python src/super_gradients/examples/train_from_recipe_example/train_from_recipe.py --config-name=imagenet_regnetY architecture=regnetY200
regnetY400
python src/super_gradients/examples/train_from_recipe_example/train_from_recipe.py --config-name=imagenet_regnetY architecture=regnetY400
regnetY600
python src/super_gradients/examples/train_from_recipe_example/train_from_recipe.py --config-name=imagenet_regnetY architecture=regnetY600
regnetY800
python src/super_gradients/examples/train_from_recipe_example/train_from_recipe.py --config-name=imagenet_regnetY architecture=regnetY800
repvgg
python src/super_gradients/examples/train_from_recipe_example/train_from_recipe.py --config-name=imagenet_repvgg
resnet50
python src/super_gradients/examples/train_from_recipe_example/train_from_recipe.py --config-name=imagenet_resnet50
resnet50_kd
python src/super_gradients/examples/train_from_kd_recipe_example/train_from_kd_recipe.py --config-name=imagenet_resnet50_kd
vit_base
python src/super_gradients/examples/train_from_recipe_example/train_from_recipe.py --config-name=imagenet_vit_base
vit_large
python src/super_gradients/examples/train_from_recipe_example/train_from_recipe.py --config-name=imagenet_vit_large
- Detection
ssd_lite_mobilenet_v2
python src/super_gradients/examples/train_from_recipe_example/train_from_recipe.py --config-name=coco2017_ssd_lite_mobilenet_v2
yolox_n
python src/super_gradients/examples/train_from_recipe_example/train_from_recipe.py --config-name=coco2017_yolox architecture=yolox_n
yolox_t
python src/super_gradients/examples/train_from_recipe_example/train_from_recipe.py --config-name=coco2017_yolox architecture=yolox_t
yolox_s
python src/super_gradients/examples/train_from_recipe_example/train_from_recipe.py --config-name=coco2017_yolox architecture=yolox_s
yolox_m
python src/super_gradients/examples/train_from_recipe_example/train_from_recipe.py --config-name=coco2017_yolox architecture=yolox_m
yolox_l
python src/super_gradients/examples/train_from_recipe_example/train_from_recipe.py --config-name=coco2017_yolox architecture=yolox_l
yolox_x
python src/super_gradients/examples/train_from_recipe_example/train_from_recipe.py --config-name=coco2017_yolox architecture=yolox_x
- Segmentation
DDRNet23
python src/super_gradients/examples/train_from_recipe_example/train_from_recipe.py --config-name=cityscapes_ddrnet
DDRNet23-Slim
python src/super_gradients/examples/train_from_recipe_example/train_from_recipe.py --config-name=cityscapes_ddrnet architecture=ddrnet_23_slim
RegSeg48
python src/super_gradients/examples/train_from_recipe_example/train_from_recipe.py --config-name=cityscapes_regseg48
STDC1-Seg50
python src/super_gradients/examples/train_from_recipe_example/train_from_recipe.py --config-name=cityscapes_stdc_seg50
STDC2-Seg50
python src/super_gradients/examples/train_from_recipe_example/train_from_recipe.py --config-name=cityscapes_stdc_seg50 architecture=stdc2_seg
STDC1-Seg75
python src/super_gradients/examples/train_from_recipe_example/train_from_recipe.py --config-name=cityscapes_stdc_seg75
STDC2-Seg75
python src/super_gradients/examples/train_from_recipe_example/train_from_recipe.py --config-name=cityscapes_stdc_seg75 external_checkpoint_path=<stdc2-backbone-pretrained-path> architecture=stdc2_seg
Press p or to see the previous file or, n or to see the next file
Browsing data directories saved to S3 is possible with DAGsHub. Let's configure your repository to easily display your data in the context of any commit!
super-gradients is now integrated with AWS S3!
Are you sure you want to delete this access key?
Browsing data directories saved to Google Cloud Storage is possible with DAGsHub. Let's configure your repository to easily display your data in the context of any commit!
super-gradients is now integrated with Google Cloud Storage!
Are you sure you want to delete this access key?
Browsing data directories saved to Azure Cloud Storage is possible with DAGsHub. Let's configure your repository to easily display your data in the context of any commit!
super-gradients is now integrated with Azure Cloud Storage!
Are you sure you want to delete this access key?
Browsing data directories saved to S3 compatible storage is possible with DAGsHub. Let's configure your repository to easily display your data in the context of any commit!
super-gradients is now integrated with your S3 compatible storage!
Are you sure you want to delete this access key?