1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
|
- import os
- import unittest
- from super_gradients.training import Trainer, utils as core_utils
- from super_gradients.training.datasets.dataset_interfaces.dataset_interface import CoCoDetectionDatasetInterface
- from super_gradients.training.datasets.datasets_conf import COCO_DETECTION_CLASSES_LIST
- from super_gradients.training.models.detection_models.yolo_base import YoloPostPredictionCallback
- from super_gradients.training.utils.detection_utils import DetectionVisualization, DetectionCollateFN, DetectionTargetsFormat
- class TestDetectionUtils(unittest.TestCase):
- def test_visualization(self):
- # Create dataset
- dataset = CoCoDetectionDatasetInterface(dataset_params={"data_dir": "/data/coco",
- "train_subdir": "images/train2017",
- "val_subdir": "images/val2017",
- "train_json_file": "instances_train2017.json",
- "val_json_file": "instances_val2017.json",
- "batch_size": 16,
- "val_batch_size": 4,
- "val_image_size": 640,
- "train_image_size": 640,
- "hgain": 5,
- "sgain": 30,
- "vgain": 30,
- "mixup_prob": 1.0,
- "degrees": 10.,
- "shear": 2.0,
- "flip_prob": 0.5,
- "hsv_prob": 1.0,
- "mosaic_scale": [0.1, 2],
- "mixup_scale": [0.5, 1.5],
- "mosaic_prob": 1.,
- "translate": 0.1,
- "val_collate_fn": DetectionCollateFN(),
- "train_collate_fn": DetectionCollateFN(),
- "cache_dir_path": None,
- "cache_train_images": False,
- "cache_val_images": False,
- "targets_format": DetectionTargetsFormat.LABEL_NORMALIZED_CXCYWH,
- "with_crowd": False,
- "filter_box_candidates": False,
- "wh_thr": 0,
- "ar_thr": 0,
- "area_thr": 0
- })
- # Create Yolo model
- trainer = Trainer('visualization_test',
- model_checkpoints_location='local',
- post_prediction_callback=YoloPostPredictionCallback())
- trainer.connect_dataset_interface(dataset, data_loader_num_workers=8)
- trainer.build_model("yolox_n", checkpoint_params={"pretrained_weights": "coco"})
- # Simulate one iteration of validation subset
- valid_loader = trainer.valid_loader
- batch_i, (imgs, targets) = 0, next(iter(valid_loader))
- imgs = core_utils.tensor_container_to_device(imgs, trainer.device)
- targets = core_utils.tensor_container_to_device(targets, trainer.device)
- output = trainer.net(imgs)
- output = trainer.post_prediction_callback(output)
- # Visualize the batch
- DetectionVisualization.visualize_batch(imgs, output, targets, batch_i,
- COCO_DETECTION_CLASSES_LIST, trainer.checkpoints_dir_path)
- # Assert images ware created and delete them
- img_name = '{}/{}_{}.jpg'
- for i in range(4):
- img_path = img_name.format(trainer.checkpoints_dir_path, batch_i, i)
- self.assertTrue(os.path.exists(img_path))
- os.remove(img_path)
- if __name__ == '__main__':
- unittest.main()
|