1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
|
- """
- This is a PyTorch implementation of MobileNetV2 architecture as described in the paper:
- Inverted Residuals and Linear Bottlenecks: Mobile Networks for Classification, Detection and Segmentation.
- https://arxiv.org/pdf/1801.04381
- Code taken from https://github.com/tonylins/pytorch-mobilenet-v2
- License: Apache Version 2.0, January 2004 http://www.apache.org/licenses/
- Pre-trained ImageNet model: 'deci-model-repository/mobilenet_v2/ckpt_best.pth'
- """
- import numpy as np
- import torch
- import torch.nn as nn
- import math
- from super_gradients.training.models.sg_module import SgModule
- def conv_bn(inp, oup, stride):
- return nn.Sequential(
- nn.Conv2d(inp, oup, 3, stride, 1, bias=False),
- nn.BatchNorm2d(oup),
- nn.ReLU6(inplace=True)
- )
- def conv_1x1_bn(inp, oup):
- return nn.Sequential(
- nn.Conv2d(inp, oup, 1, 1, 0, bias=False),
- nn.BatchNorm2d(oup),
- nn.ReLU6(inplace=True)
- )
- def make_divisible(x, divisible_by=8):
- import numpy as np
- return int(np.ceil(x * 1. / divisible_by) * divisible_by)
- class InvertedResidual(nn.Module):
- def __init__(self, inp, oup, stride, expand_ratio, grouped_conv_size=1):
- """
- :param inp: number of input channels
- :param oup: number of output channels
- :param stride: conv stride
- :param expand_ratio: expansion ratio of the hidden layer after pointwise conv
- :grouped_conv_size: number of channels per grouped convolution, for depth-wise-separable convolution, use grouped_conv_size=1
- """
- super(InvertedResidual, self).__init__()
- self.stride = stride
- assert stride in [1, 2]
- hidden_dim = int(inp * expand_ratio)
- groups = int(hidden_dim / grouped_conv_size)
- self.use_res_connect = self.stride == 1 and inp == oup
- if expand_ratio == 1:
- self.conv = nn.Sequential(
- # dw
- nn.Conv2d(hidden_dim, hidden_dim, 3, stride, 1, groups=groups, bias=False),
- nn.BatchNorm2d(hidden_dim),
- nn.ReLU6(inplace=True),
- # pw-linear
- nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False),
- nn.BatchNorm2d(oup),
- )
- else:
- self.conv = nn.Sequential(
- # pw
- nn.Conv2d(inp, hidden_dim, 1, 1, 0, bias=False),
- nn.BatchNorm2d(hidden_dim),
- nn.ReLU6(inplace=True),
- # dw
- nn.Conv2d(hidden_dim, hidden_dim, 3, stride, 1, groups=groups, bias=False),
- nn.BatchNorm2d(hidden_dim),
- nn.ReLU6(inplace=True),
- # pw-linear
- nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False),
- nn.BatchNorm2d(oup),
- )
- def forward(self, x):
- if self.use_res_connect:
- return x + self.conv(x)
- else:
- return self.conv(x)
- class MobileNetV2(SgModule):
- def __init__(self, num_classes, width_mult=1., structure=None, backbone_mode: bool = False,
- grouped_conv_size=1) -> object:
- super(MobileNetV2, self).__init__()
- block = InvertedResidual
- input_channel = 32
- last_channel = 1280
- # IF STRUCTURE IS NONE - USE THE DEFAULT STRUCTURE NOTED
- # t, c, n, s stage-0 is the first conv_bn layer
- self.interverted_residual_setting = structure or [[1, 16, 1, 1], # stage-1
- [6, 24, 2, 2], # stage-2
- [6, 32, 3, 2], # stage-3
- [6, 64, 4, 2], # stage-4
- [6, 96, 3, 1], # stage-5
- [6, 160, 3, 2], # stage-6
- [6, 320, 1, 1]] # stage-7
- # stage-8 is the last_layer
- self.last_channel = make_divisible(last_channel * width_mult) if width_mult > 1.0 else last_channel
- self.features = [conv_bn(3, input_channel, 2)]
- # building inverted residual blocks
- for t, c, n, s in self.interverted_residual_setting:
- output_channel = make_divisible(c * width_mult) if t > 1 else c
- for i in range(n):
- if i == 0:
- self.features.append(
- block(input_channel, output_channel, s, expand_ratio=t, grouped_conv_size=grouped_conv_size))
- else:
- self.features.append(
- block(input_channel, output_channel, 1, expand_ratio=t, grouped_conv_size=grouped_conv_size))
- input_channel = output_channel
- # building last several layers
- self.features.append(conv_1x1_bn(input_channel, self.last_channel))
- # make it nn.Sequential
- self.features = nn.Sequential(*self.features)
- if backbone_mode:
- self.classifier = nn.Identity()
- self.connection_layers_input_channel_size = self._extract_connection_layers_input_channel_size()
- else:
- # building classifier
- self.classifier = nn.Linear(self.last_channel, num_classes)
- self._initialize_weights()
- def forward(self, x):
- x = self.features(x)
- x = x.mean(3).mean(2)
- x = self.classifier(x)
- return x
- def _extract_connection_layers_input_channel_size(self):
- """
- Extracts the number of channels out when using mobilenetV2 as yolo backbone
- """
- curr_layer_input = torch.rand(1, 3, 320, 320) # input dims are used to extract number of channels
- layers_num_to_extract = [np.array(self.interverted_residual_setting)[:stage, 2].sum() for stage in [3, 5]]
- connection_layers_input_channel_size = []
- for layer_idx, feature in enumerate(self.features):
- curr_layer_input = feature(curr_layer_input)
- if layer_idx in layers_num_to_extract:
- connection_layers_input_channel_size.append(curr_layer_input.shape[1])
- connection_layers_input_channel_size.append(self.last_channel)
- connection_layers_input_channel_size.reverse()
- return connection_layers_input_channel_size
- def _initialize_weights(self):
- for m in self.modules():
- if isinstance(m, nn.Conv2d):
- n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
- m.weight.data.normal_(0, math.sqrt(2. / n))
- if m.bias is not None:
- m.bias.data.zero_()
- elif isinstance(m, nn.BatchNorm2d):
- m.weight.data.fill_(1)
- m.bias.data.zero_()
- elif isinstance(m, nn.Linear):
- n = m.weight.size(1)
- m.weight.data.normal_(0, 0.01)
- m.bias.data.zero_()
- def mobile_net_v2(arch_params):
- """
- :param arch_params: HpmStruct
- must contain: 'num_classes': int
- :return: MobileNetV2: nn.Module
- """
- return MobileNetV2(num_classes=arch_params.num_classes, width_mult=1., structure=None)
- def mobile_net_v2_135(arch_params):
- """
- This Model achieves 75.73% on Imagenet - similar to Resnet50
- :param arch_params: HpmStruct
- must contain: 'num_classes': int
- :return: MobileNetV2: nn.Module
- """
- return MobileNetV2(num_classes=arch_params.num_classes, width_mult=1.35, structure=None)
- def custom_mobile_net_v2(arch_params):
- """
- :param arch_params: HpmStruct
- must contain:
- 'num_classes': int
- 'width_mult': float
- 'structure' : list. specify the mobilenetv2 architecture
- :return: MobileNetV2: nn.Module
- """
- return MobileNetV2(num_classes=arch_params.num_classes, width_mult=arch_params.width_mult,
- structure=arch_params.structure)
|