Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

mobilenetv2.py 7.9 KB

You have to be logged in to leave a comment. Sign In
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
  1. """
  2. This is a PyTorch implementation of MobileNetV2 architecture as described in the paper:
  3. Inverted Residuals and Linear Bottlenecks: Mobile Networks for Classification, Detection and Segmentation.
  4. https://arxiv.org/pdf/1801.04381
  5. Code taken from https://github.com/tonylins/pytorch-mobilenet-v2
  6. License: Apache Version 2.0, January 2004 http://www.apache.org/licenses/
  7. Pre-trained ImageNet model: 'deci-model-repository/mobilenet_v2/ckpt_best.pth'
  8. """
  9. import numpy as np
  10. import torch
  11. import torch.nn as nn
  12. import math
  13. from super_gradients.training.models.sg_module import SgModule
  14. def conv_bn(inp, oup, stride):
  15. return nn.Sequential(
  16. nn.Conv2d(inp, oup, 3, stride, 1, bias=False),
  17. nn.BatchNorm2d(oup),
  18. nn.ReLU6(inplace=True)
  19. )
  20. def conv_1x1_bn(inp, oup):
  21. return nn.Sequential(
  22. nn.Conv2d(inp, oup, 1, 1, 0, bias=False),
  23. nn.BatchNorm2d(oup),
  24. nn.ReLU6(inplace=True)
  25. )
  26. def make_divisible(x, divisible_by=8):
  27. import numpy as np
  28. return int(np.ceil(x * 1. / divisible_by) * divisible_by)
  29. class InvertedResidual(nn.Module):
  30. def __init__(self, inp, oup, stride, expand_ratio, grouped_conv_size=1):
  31. """
  32. :param inp: number of input channels
  33. :param oup: number of output channels
  34. :param stride: conv stride
  35. :param expand_ratio: expansion ratio of the hidden layer after pointwise conv
  36. :grouped_conv_size: number of channels per grouped convolution, for depth-wise-separable convolution, use grouped_conv_size=1
  37. """
  38. super(InvertedResidual, self).__init__()
  39. self.stride = stride
  40. assert stride in [1, 2]
  41. hidden_dim = int(inp * expand_ratio)
  42. groups = int(hidden_dim / grouped_conv_size)
  43. self.use_res_connect = self.stride == 1 and inp == oup
  44. if expand_ratio == 1:
  45. self.conv = nn.Sequential(
  46. # dw
  47. nn.Conv2d(hidden_dim, hidden_dim, 3, stride, 1, groups=groups, bias=False),
  48. nn.BatchNorm2d(hidden_dim),
  49. nn.ReLU6(inplace=True),
  50. # pw-linear
  51. nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False),
  52. nn.BatchNorm2d(oup),
  53. )
  54. else:
  55. self.conv = nn.Sequential(
  56. # pw
  57. nn.Conv2d(inp, hidden_dim, 1, 1, 0, bias=False),
  58. nn.BatchNorm2d(hidden_dim),
  59. nn.ReLU6(inplace=True),
  60. # dw
  61. nn.Conv2d(hidden_dim, hidden_dim, 3, stride, 1, groups=groups, bias=False),
  62. nn.BatchNorm2d(hidden_dim),
  63. nn.ReLU6(inplace=True),
  64. # pw-linear
  65. nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False),
  66. nn.BatchNorm2d(oup),
  67. )
  68. def forward(self, x):
  69. if self.use_res_connect:
  70. return x + self.conv(x)
  71. else:
  72. return self.conv(x)
  73. class MobileNetV2(SgModule):
  74. def __init__(self, num_classes, width_mult=1., structure=None, backbone_mode: bool = False,
  75. grouped_conv_size=1) -> object:
  76. super(MobileNetV2, self).__init__()
  77. block = InvertedResidual
  78. input_channel = 32
  79. last_channel = 1280
  80. # IF STRUCTURE IS NONE - USE THE DEFAULT STRUCTURE NOTED
  81. # t, c, n, s stage-0 is the first conv_bn layer
  82. self.interverted_residual_setting = structure or [[1, 16, 1, 1], # stage-1
  83. [6, 24, 2, 2], # stage-2
  84. [6, 32, 3, 2], # stage-3
  85. [6, 64, 4, 2], # stage-4
  86. [6, 96, 3, 1], # stage-5
  87. [6, 160, 3, 2], # stage-6
  88. [6, 320, 1, 1]] # stage-7
  89. # stage-8 is the last_layer
  90. self.last_channel = make_divisible(last_channel * width_mult) if width_mult > 1.0 else last_channel
  91. self.features = [conv_bn(3, input_channel, 2)]
  92. # building inverted residual blocks
  93. for t, c, n, s in self.interverted_residual_setting:
  94. output_channel = make_divisible(c * width_mult) if t > 1 else c
  95. for i in range(n):
  96. if i == 0:
  97. self.features.append(
  98. block(input_channel, output_channel, s, expand_ratio=t, grouped_conv_size=grouped_conv_size))
  99. else:
  100. self.features.append(
  101. block(input_channel, output_channel, 1, expand_ratio=t, grouped_conv_size=grouped_conv_size))
  102. input_channel = output_channel
  103. # building last several layers
  104. self.features.append(conv_1x1_bn(input_channel, self.last_channel))
  105. # make it nn.Sequential
  106. self.features = nn.Sequential(*self.features)
  107. if backbone_mode:
  108. self.classifier = nn.Identity()
  109. self.connection_layers_input_channel_size = self._extract_connection_layers_input_channel_size()
  110. else:
  111. # building classifier
  112. self.classifier = nn.Linear(self.last_channel, num_classes)
  113. self._initialize_weights()
  114. def forward(self, x):
  115. x = self.features(x)
  116. x = x.mean(3).mean(2)
  117. x = self.classifier(x)
  118. return x
  119. def _extract_connection_layers_input_channel_size(self):
  120. """
  121. Extracts the number of channels out when using mobilenetV2 as yolo backbone
  122. """
  123. curr_layer_input = torch.rand(1, 3, 320, 320) # input dims are used to extract number of channels
  124. layers_num_to_extract = [np.array(self.interverted_residual_setting)[:stage, 2].sum() for stage in [3, 5]]
  125. connection_layers_input_channel_size = []
  126. for layer_idx, feature in enumerate(self.features):
  127. curr_layer_input = feature(curr_layer_input)
  128. if layer_idx in layers_num_to_extract:
  129. connection_layers_input_channel_size.append(curr_layer_input.shape[1])
  130. connection_layers_input_channel_size.append(self.last_channel)
  131. connection_layers_input_channel_size.reverse()
  132. return connection_layers_input_channel_size
  133. def _initialize_weights(self):
  134. for m in self.modules():
  135. if isinstance(m, nn.Conv2d):
  136. n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
  137. m.weight.data.normal_(0, math.sqrt(2. / n))
  138. if m.bias is not None:
  139. m.bias.data.zero_()
  140. elif isinstance(m, nn.BatchNorm2d):
  141. m.weight.data.fill_(1)
  142. m.bias.data.zero_()
  143. elif isinstance(m, nn.Linear):
  144. n = m.weight.size(1)
  145. m.weight.data.normal_(0, 0.01)
  146. m.bias.data.zero_()
  147. def mobile_net_v2(arch_params):
  148. """
  149. :param arch_params: HpmStruct
  150. must contain: 'num_classes': int
  151. :return: MobileNetV2: nn.Module
  152. """
  153. return MobileNetV2(num_classes=arch_params.num_classes, width_mult=1., structure=None)
  154. def mobile_net_v2_135(arch_params):
  155. """
  156. This Model achieves 75.73% on Imagenet - similar to Resnet50
  157. :param arch_params: HpmStruct
  158. must contain: 'num_classes': int
  159. :return: MobileNetV2: nn.Module
  160. """
  161. return MobileNetV2(num_classes=arch_params.num_classes, width_mult=1.35, structure=None)
  162. def custom_mobile_net_v2(arch_params):
  163. """
  164. :param arch_params: HpmStruct
  165. must contain:
  166. 'num_classes': int
  167. 'width_mult': float
  168. 'structure' : list. specify the mobilenetv2 architecture
  169. :return: MobileNetV2: nn.Module
  170. """
  171. return MobileNetV2(num_classes=arch_params.num_classes, width_mult=arch_params.width_mult,
  172. structure=arch_params.structure)
Tip!

Press p or to see the previous file or, n or to see the next file

Comments

Loading...