Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

test_finetune.py 20 KB

You have to be logged in to leave a comment. Sign In
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
  1. import unittest
  2. from copy import deepcopy
  3. from super_gradients import Trainer
  4. from super_gradients.training.dataloaders.dataloaders import classification_test_dataloader, detection_test_dataloader, segmentation_test_dataloader
  5. from super_gradients.training.losses import PPYoloELoss, STDCLoss
  6. from super_gradients.training.losses.ddrnet_loss import DDRNetLoss
  7. from super_gradients.training.metrics import Accuracy, DetectionMetrics, DetectionMetrics_050, IoU
  8. from super_gradients.training.models import YoloXPostPredictionCallback
  9. from super_gradients.training.models.detection_models.pp_yolo_e import PPYoloEPostPredictionCallback
  10. from super_gradients.training.utils.utils import check_models_have_same_weights
  11. from super_gradients.training import models
  12. from super_gradients.common.object_names import Models
  13. class TestFineTune(unittest.TestCase):
  14. def test_train_with_finetune_customizable_detector(self):
  15. # Define Model
  16. trainer = Trainer("test_train_with_finetune_customizable_detector")
  17. net = models.get(Models.YOLO_NAS_S, num_classes=5, pretrained_weights="coco")
  18. net_before_train = deepcopy(net)
  19. train_params = {
  20. "initial_lr": 5e-4,
  21. "finetune": True,
  22. "lr_mode": "cosine",
  23. "optimizer": "AdamW",
  24. "optimizer_params": {"weight_decay": 0.0001},
  25. "max_epochs": 3,
  26. "mixed_precision": True,
  27. "average_best_models": False,
  28. "loss": PPYoloELoss(use_static_assigner=False, num_classes=5, reg_max=16),
  29. "valid_metrics_list": [
  30. DetectionMetrics_050(
  31. score_thres=0.1,
  32. top_k_predictions=300,
  33. num_cls=5,
  34. normalize_targets=True,
  35. include_classwise_ap=False,
  36. post_prediction_callback=PPYoloEPostPredictionCallback(score_threshold=0.01, nms_top_k=1000, max_predictions=300, nms_threshold=0.7),
  37. )
  38. ],
  39. "metric_to_watch": "mAP@0.50",
  40. }
  41. trainer.train(
  42. model=net,
  43. training_params=train_params,
  44. train_loader=detection_test_dataloader(),
  45. valid_loader=detection_test_dataloader(),
  46. )
  47. self.assertTrue(check_models_have_same_weights(net_before_train.backbone, net.backbone, skip_bn_stats=True))
  48. self.assertTrue(check_models_have_same_weights(net_before_train.neck, net.neck, skip_bn_stats=True))
  49. self.assertFalse(check_models_have_same_weights(net_before_train.heads, net.heads))
  50. def test_train_with_finetune_ppyoloe(self):
  51. # Define Model
  52. trainer = Trainer("test_train_with_finetune_ppyoloe")
  53. net = models.get(Models.PP_YOLOE_S, num_classes=5, pretrained_weights="coco")
  54. net_before_train = deepcopy(net)
  55. train_params = {
  56. "initial_lr": 5e-4,
  57. "finetune": True,
  58. "lr_mode": "cosine",
  59. "optimizer": "AdamW",
  60. "optimizer_params": {"weight_decay": 0.0001},
  61. "max_epochs": 3,
  62. "mixed_precision": True,
  63. "average_best_models": False,
  64. "loss": PPYoloELoss(use_static_assigner=False, num_classes=5, reg_max=16),
  65. "valid_metrics_list": [
  66. DetectionMetrics_050(
  67. score_thres=0.1,
  68. top_k_predictions=300,
  69. num_cls=5,
  70. normalize_targets=True,
  71. include_classwise_ap=False,
  72. post_prediction_callback=PPYoloEPostPredictionCallback(score_threshold=0.01, nms_top_k=1000, max_predictions=300, nms_threshold=0.7),
  73. )
  74. ],
  75. "metric_to_watch": "mAP@0.50",
  76. }
  77. trainer.train(
  78. model=net,
  79. training_params=train_params,
  80. train_loader=detection_test_dataloader(),
  81. valid_loader=detection_test_dataloader(),
  82. )
  83. self.assertTrue(check_models_have_same_weights(net_before_train.backbone, net.backbone, skip_bn_stats=True))
  84. self.assertTrue(check_models_have_same_weights(net_before_train.neck, net.neck, skip_bn_stats=True))
  85. self.assertFalse(check_models_have_same_weights(net_before_train.head, net.head))
  86. def test_train_with_finetune_yolox(self):
  87. # Define Model
  88. trainer = Trainer("test_train_with_finetune_yolox")
  89. net = models.get(Models.YOLOX_S, num_classes=5, pretrained_weights="coco")
  90. net_before_train = deepcopy(net)
  91. train_params = {
  92. "max_epochs": 3,
  93. "average_best_models": False,
  94. "initial_lr": 0.02,
  95. "loss": "YoloXDetectionLoss",
  96. "criterion_params": {"strides": [8, 16, 32], "num_classes": 5}, # output strides of all yolo outputs
  97. "train_metrics_list": [],
  98. "valid_metrics_list": [DetectionMetrics(post_prediction_callback=YoloXPostPredictionCallback(), normalize_targets=True, num_cls=5)],
  99. "metric_to_watch": "mAP@0.50:0.95",
  100. "greater_metric_to_watch_is_better": True,
  101. "finetune": True,
  102. }
  103. trainer.train(
  104. model=net,
  105. training_params=train_params,
  106. train_loader=detection_test_dataloader(),
  107. valid_loader=detection_test_dataloader(),
  108. )
  109. self.assertTrue(check_models_have_same_weights(net_before_train._backbone, net._backbone, skip_bn_stats=True))
  110. self.assertFalse(check_models_have_same_weights(net_before_train._head, net._head))
  111. def test_train_with_finetune_ddrnet(self):
  112. # Define Model
  113. trainer = Trainer("test_train_with_finetune_ddrnet")
  114. net = models.get(Models.DDRNET_23, num_classes=5, pretrained_weights="cityscapes", arch_params={"use_aux_heads": True})
  115. net_before_train = deepcopy(net)
  116. train_params = {
  117. "max_epochs": 3,
  118. "initial_lr": 1e-2,
  119. "finetune": True,
  120. "loss": DDRNetLoss(),
  121. "lr_mode": "PolyLRScheduler",
  122. "ema": True, # unlike the paper (not specified in paper)
  123. "average_best_models": False,
  124. "optimizer": "SGD",
  125. "mixed_precision": False,
  126. "optimizer_params": {"weight_decay": 5e-4, "momentum": 0.9},
  127. "load_opt_params": False,
  128. "train_metrics_list": [IoU(5)],
  129. "valid_metrics_list": [IoU(5)],
  130. "metric_to_watch": "IoU",
  131. "greater_metric_to_watch_is_better": True,
  132. }
  133. trainer.train(
  134. model=net,
  135. training_params=train_params,
  136. train_loader=segmentation_test_dataloader(),
  137. valid_loader=segmentation_test_dataloader(),
  138. )
  139. self.assertTrue(check_models_have_same_weights(net_before_train.final_layer, net.final_layer, skip_bn_stats=True))
  140. self.assertTrue(check_models_have_same_weights(net_before_train.seghead_extra, net.seghead_extra, skip_bn_stats=True))
  141. self.assertFalse(check_models_have_same_weights(net_before_train, net))
  142. def test_train_with_finetune_ppliteseg(self):
  143. # Define Model
  144. trainer = Trainer("test_train_with_finetune_ppliteseg")
  145. net = models.get(Models.PP_LITE_T_SEG50, num_classes=5, pretrained_weights="cityscapes", arch_params={"use_aux_heads": True})
  146. net_before_train = deepcopy(net)
  147. train_params = {
  148. "max_epochs": 3,
  149. "initial_lr": 1e-2,
  150. "finetune": True,
  151. "loss": {
  152. "DiceCEEdgeLoss": {
  153. "num_classes": 5,
  154. "num_aux_heads": 3,
  155. "num_detail_heads": 0,
  156. "weights": [1.0, 1.0, 1.0, 1.0],
  157. "dice_ce_weights": [1.0, 1.0],
  158. "ce_edge_weights": [0.5, 0.5],
  159. "edge_kernel": 5,
  160. }
  161. },
  162. "average_best_models": False,
  163. "optimizer": "SGD",
  164. "mixed_precision": False,
  165. "optimizer_params": {"weight_decay": 5e-4, "momentum": 0.9},
  166. "load_opt_params": False,
  167. "train_metrics_list": [IoU(5)],
  168. "valid_metrics_list": [IoU(5)],
  169. "metric_to_watch": "IoU",
  170. "greater_metric_to_watch_is_better": True,
  171. }
  172. trainer.train(
  173. model=net,
  174. training_params=train_params,
  175. train_loader=segmentation_test_dataloader(),
  176. valid_loader=segmentation_test_dataloader(),
  177. )
  178. self.assertTrue(check_models_have_same_weights(net_before_train.seg_head, net.seg_head, skip_bn_stats=True))
  179. self.assertTrue(check_models_have_same_weights(net_before_train.aux_heads, net.aux_heads, skip_bn_stats=True))
  180. self.assertFalse(check_models_have_same_weights(net_before_train, net))
  181. def test_train_with_finetune_regseg(self):
  182. # Define Model
  183. trainer = Trainer("test_train_with_finetune_regseg")
  184. net = models.get(Models.REGSEG48, num_classes=5, pretrained_weights="cityscapes")
  185. net_before_train = deepcopy(net)
  186. train_params = {
  187. "max_epochs": 3,
  188. "initial_lr": 1e-2,
  189. "loss": "CrossEntropyLoss",
  190. "lr_mode": "PolyLRScheduler",
  191. "ema": True,
  192. "optimizer": "SGD",
  193. "optimizer_params": {"weight_decay": 5e-4, "momentum": 0.9},
  194. "load_opt_params": False,
  195. "train_metrics_list": [IoU(5)],
  196. "valid_metrics_list": [IoU(5)],
  197. "metric_to_watch": "IoU",
  198. "greater_metric_to_watch_is_better": True,
  199. "finetune": True,
  200. }
  201. trainer.train(
  202. model=net,
  203. training_params=train_params,
  204. train_loader=segmentation_test_dataloader(),
  205. valid_loader=segmentation_test_dataloader(),
  206. )
  207. self.assertTrue(check_models_have_same_weights(net_before_train.stem, net.stem, skip_bn_stats=True))
  208. self.assertTrue(check_models_have_same_weights(net_before_train.backbone, net.backbone, skip_bn_stats=True))
  209. self.assertTrue(check_models_have_same_weights(net_before_train.decoder, net.decoder, skip_bn_stats=True))
  210. self.assertFalse(check_models_have_same_weights(net_before_train.head, net.head))
  211. def test_train_with_finetune_segformer(self):
  212. # Define Model
  213. trainer = Trainer("test_train_with_finetune_segformer")
  214. net = models.get(Models.SEGFORMER_B0, num_classes=5, pretrained_weights="cityscapes")
  215. net_before_train = deepcopy(net)
  216. train_params = {
  217. "max_epochs": 3,
  218. "initial_lr": 1e-2,
  219. "loss": "CrossEntropyLoss",
  220. "lr_mode": "PolyLRScheduler",
  221. "ema": True,
  222. "optimizer": "SGD",
  223. "optimizer_params": {"weight_decay": 5e-4, "momentum": 0.9},
  224. "load_opt_params": False,
  225. "train_metrics_list": [IoU(5)],
  226. "valid_metrics_list": [IoU(5)],
  227. "metric_to_watch": "IoU",
  228. "greater_metric_to_watch_is_better": True,
  229. }
  230. trainer.train(
  231. model=net,
  232. training_params=train_params,
  233. train_loader=segmentation_test_dataloader(),
  234. valid_loader=segmentation_test_dataloader(),
  235. )
  236. self.assertTrue(check_models_have_same_weights(net_before_train._backbone, net._backbone, skip_bn_stats=True))
  237. self.assertFalse(check_models_have_same_weights(net_before_train.decode_head, net.decode_head))
  238. def test_train_with_finetune_stdc(self):
  239. # Define Model
  240. trainer = Trainer("test_train_with_finetune_stdc")
  241. net = models.get(Models.STDC1_SEG50, num_classes=5, pretrained_weights="cityscapes")
  242. net_before_train = deepcopy(net)
  243. train_params = {
  244. "max_epochs": 3,
  245. "initial_lr": 1e-2,
  246. "loss": STDCLoss(num_classes=5),
  247. "lr_mode": "PolyLRScheduler",
  248. "ema": True, # unlike the paper (not specified in paper)
  249. "optimizer": "SGD",
  250. "optimizer_params": {"weight_decay": 5e-4, "momentum": 0.9},
  251. "load_opt_params": False,
  252. "train_metrics_list": [IoU(5)],
  253. "valid_metrics_list": [IoU(5)],
  254. "metric_to_watch": "IoU",
  255. "greater_metric_to_watch_is_better": True,
  256. }
  257. trainer.train(
  258. model=net,
  259. training_params=train_params,
  260. train_loader=segmentation_test_dataloader(),
  261. valid_loader=segmentation_test_dataloader(),
  262. )
  263. self.assertTrue(check_models_have_same_weights(net_before_train.cp, net.cp, skip_bn_stats=True))
  264. self.assertTrue(check_models_have_same_weights(net_before_train.ffm, net.ffm, skip_bn_stats=True))
  265. self.assertFalse(check_models_have_same_weights(net_before_train.detail_head8, net.detail_head8))
  266. self.assertFalse(check_models_have_same_weights(net_before_train.aux_head_s16, net.aux_head_s16))
  267. self.assertFalse(check_models_have_same_weights(net_before_train.aux_head_s32, net.aux_head_s32))
  268. self.assertFalse(check_models_have_same_weights(net_before_train.segmentation_head, net.segmentation_head))
  269. def test_train_with_finetune_beit(self):
  270. # Define Model
  271. trainer = Trainer("test_train_with_finetune_beit")
  272. net = models.get(Models.BEIT_BASE_PATCH16_224, num_classes=5, pretrained_weights="imagenet")
  273. net_before_train = deepcopy(net)
  274. train_params = {
  275. "max_epochs": 3,
  276. "lr_updates": [1],
  277. "lr_decay_factor": 0.1,
  278. "initial_lr": 0.6,
  279. "loss": "CrossEntropyLoss",
  280. "lr_mode": "StepLRScheduler",
  281. "optimizer_params": {"weight_decay": 0.000, "momentum": 0.9},
  282. "train_metrics_list": [Accuracy()],
  283. "valid_metrics_list": [Accuracy()],
  284. "metric_to_watch": "Accuracy",
  285. "greater_metric_to_watch_is_better": True,
  286. }
  287. trainer.train(
  288. model=net,
  289. training_params=train_params,
  290. train_loader=classification_test_dataloader(image_size=224),
  291. valid_loader=classification_test_dataloader(image_size=224),
  292. )
  293. self.assertFalse(check_models_have_same_weights(net_before_train, net))
  294. self.assertTrue(check_models_have_same_weights(net_before_train.head, net.head, skip_bn_stats=True))
  295. def test_train_with_finetune_efficientnet(self):
  296. # Define Model
  297. trainer = Trainer("test_train_with_finetune_efficientnet")
  298. net = models.get(Models.EFFICIENTNET_B0, num_classes=5, pretrained_weights="imagenet")
  299. net_before_train = deepcopy(net)
  300. train_params = {
  301. "max_epochs": 3,
  302. "lr_updates": [1],
  303. "lr_decay_factor": 0.1,
  304. "initial_lr": 0.6,
  305. "loss": "CrossEntropyLoss",
  306. "lr_mode": "StepLRScheduler",
  307. "optimizer_params": {"weight_decay": 0.000, "momentum": 0.9},
  308. "train_metrics_list": [Accuracy()],
  309. "valid_metrics_list": [Accuracy()],
  310. "metric_to_watch": "Accuracy",
  311. "greater_metric_to_watch_is_better": True,
  312. }
  313. trainer.train(
  314. model=net,
  315. training_params=train_params,
  316. train_loader=classification_test_dataloader(image_size=224),
  317. valid_loader=classification_test_dataloader(image_size=224),
  318. )
  319. self.assertFalse(check_models_have_same_weights(net_before_train, net))
  320. self.assertTrue(check_models_have_same_weights(net_before_train._fc, net._fc, skip_bn_stats=True))
  321. def test_train_with_finetune_mobilenet(self):
  322. # Define Model
  323. trainer = Trainer("test_train_with_finetune_mobilenet")
  324. net = models.get(Models.MOBILENET_V3_SMALL, num_classes=5, pretrained_weights="imagenet")
  325. net_before_train = deepcopy(net)
  326. train_params = {
  327. "max_epochs": 3,
  328. "lr_updates": [1],
  329. "lr_decay_factor": 0.1,
  330. "initial_lr": 0.6,
  331. "loss": "CrossEntropyLoss",
  332. "lr_mode": "StepLRScheduler",
  333. "optimizer_params": {"weight_decay": 0.000, "momentum": 0.9},
  334. "train_metrics_list": [Accuracy()],
  335. "valid_metrics_list": [Accuracy()],
  336. "metric_to_watch": "Accuracy",
  337. "greater_metric_to_watch_is_better": True,
  338. }
  339. trainer.train(
  340. model=net,
  341. training_params=train_params,
  342. train_loader=classification_test_dataloader(image_size=224),
  343. valid_loader=classification_test_dataloader(image_size=224),
  344. )
  345. self.assertFalse(check_models_have_same_weights(net_before_train, net))
  346. self.assertTrue(check_models_have_same_weights(net_before_train.classifier, net.classifier, skip_bn_stats=True))
  347. def test_train_with_finetune_regenet(self):
  348. # Define Model
  349. trainer = Trainer("test_train_with_finetune_regenet")
  350. net = models.get(Models.REGNETY200, num_classes=5, pretrained_weights="imagenet")
  351. net_before_train = deepcopy(net)
  352. train_params = {
  353. "max_epochs": 3,
  354. "lr_updates": [1],
  355. "lr_decay_factor": 0.1,
  356. "initial_lr": 0.6,
  357. "loss": "CrossEntropyLoss",
  358. "lr_mode": "StepLRScheduler",
  359. "optimizer_params": {"weight_decay": 0.000, "momentum": 0.9},
  360. "train_metrics_list": [Accuracy()],
  361. "valid_metrics_list": [Accuracy()],
  362. "metric_to_watch": "Accuracy",
  363. "greater_metric_to_watch_is_better": True,
  364. }
  365. trainer.train(
  366. model=net,
  367. training_params=train_params,
  368. train_loader=classification_test_dataloader(image_size=224),
  369. valid_loader=classification_test_dataloader(image_size=224),
  370. )
  371. self.assertFalse(check_models_have_same_weights(net_before_train, net))
  372. self.assertTrue(check_models_have_same_weights(net_before_train.net.head, net.net.head, skip_bn_stats=True))
  373. def test_train_with_finetune_repvgg(self):
  374. # Define Model
  375. trainer = Trainer("test_train_with_finetune_repvgg")
  376. net = models.get(Models.REPVGG_A0, num_classes=5, pretrained_weights="imagenet", arch_params={"build_residual_branches": True})
  377. net_before_train = deepcopy(net)
  378. train_params = {
  379. "max_epochs": 3,
  380. "lr_updates": [1],
  381. "lr_decay_factor": 0.1,
  382. "initial_lr": 0.6,
  383. "loss": "CrossEntropyLoss",
  384. "lr_mode": "StepLRScheduler",
  385. "optimizer_params": {"weight_decay": 0.000, "momentum": 0.9},
  386. "train_metrics_list": [Accuracy()],
  387. "valid_metrics_list": [Accuracy()],
  388. "metric_to_watch": "Accuracy",
  389. "greater_metric_to_watch_is_better": True,
  390. }
  391. trainer.train(
  392. model=net,
  393. training_params=train_params,
  394. train_loader=classification_test_dataloader(image_size=224),
  395. valid_loader=classification_test_dataloader(image_size=224),
  396. )
  397. self.assertFalse(check_models_have_same_weights(net_before_train, net))
  398. self.assertTrue(check_models_have_same_weights(net_before_train.linear, net.linear, skip_bn_stats=True))
  399. def test_train_with_finetune_resnet(self):
  400. # Define Model
  401. trainer = Trainer("test_train_with_finetune_resnet")
  402. net = models.get(Models.RESNET18, num_classes=5, pretrained_weights="imagenet")
  403. net_before_train = deepcopy(net)
  404. train_params = {
  405. "max_epochs": 3,
  406. "lr_updates": [1],
  407. "lr_decay_factor": 0.1,
  408. "initial_lr": 0.6,
  409. "loss": "CrossEntropyLoss",
  410. "lr_mode": "StepLRScheduler",
  411. "optimizer_params": {"weight_decay": 0.000, "momentum": 0.9},
  412. "train_metrics_list": [Accuracy()],
  413. "valid_metrics_list": [Accuracy()],
  414. "metric_to_watch": "Accuracy",
  415. "greater_metric_to_watch_is_better": True,
  416. }
  417. trainer.train(
  418. model=net,
  419. training_params=train_params,
  420. train_loader=classification_test_dataloader(image_size=224),
  421. valid_loader=classification_test_dataloader(image_size=224),
  422. )
  423. self.assertFalse(check_models_have_same_weights(net_before_train, net))
  424. self.assertTrue(check_models_have_same_weights(net_before_train.linear, net.linear, skip_bn_stats=True))
Tip!

Press p or to see the previous file or, n or to see the next file

Comments

Loading...